摘要:
A semiconductor memory device comprises column decoders of the number greater than the number of column addresses of a memory cell array and logical circuits of the same number as that of the column addresses. A column gate of a column is controlled by means of a logical OR between outputs from a plurality of column decoders for decoding different column addresses. As a result, even a column located at an end of the memory cell array can be accessed by means of a logical OR between outputs from a column decoder corresponding to the column and another column decoder.
摘要:
When data stored in a memory cell of a memory cell array is written into cache memory, a write signal LW is set at an "H" level. The write signal LW is input into a data-line pair initialization select circuit via an initialization control circuit, and a signal EQE is set at an "H" level in all columns. A data-line pair initialization circuit then sets the potential of the data-line pairs in all columns at the same level. When the write signal LW is input to a transfer gate via a transfer gate control circuit, the transfer gates in all columns are turned ON. The delay time of the transfer gate control circuit is the same as or greater than the delay time of the initialization control.
摘要:
According to the present invention, a data bus common to a plurality of memory cell arrays is formed by selecting a column so as to prevent a data collision from occurring. Specifically, two memory cell arrays have each of data buses in common. A column decoder is supplied with a control signal to control a column selection logic circuit. The column selection logic circuit is so controlled that the data read out to the data buses in response to the control signal is prevented from colliding with each other during the simultaneous access to the two cell arrays.
摘要:
A semiconductor memory device includes a memory cell array, row decoder, bit line pairs, sense amplifier, sense amplifier control circuit, data latch, transfer gate, transfer gate control circuit, and write circuit. The memory cell array has dynamic memory cells arranged in an array form. The row decoder decodes a row address signal to select a desired one of rows of the memory cell array. Each of the bit line pairs is connected to those of the memory cells which are arranged on a corresponding one of columns of the memory cell array. The sense amplifier amplifies data read out on the paired bit lines and positively feeding data back to the paired bit lines to hold the data. The sense amplifier control circuit controls the operation of the sense amplifier. The data latch latches readout data and write data. The transfer gate transfers data between the data latch and the sense amplifier. The transfer gate control circuit controls the transfer gate. The write circuit writes data into the data latch in synchronism with a clock signal. At the time of writing data into the memory cells, data is previously supplied to the data latch by the write circuit and latched in the data latch, and after the transfer gate control circuit controls the transfer gate to supply data to the bit line pairs from the data latch, the sense amplifier control circuit activates the sense amplifier.
摘要:
A semiconductor device of a memory-macro type can be designed within a short time to have a desired storage capacity, which does not occupy a large area, so as to reduce the chip cost. The semiconductor device includes a memory macro having sub-memory macros, each sub-memory macro having a DRAM memory-cell array, and a row decoder and a column decoder for selecting any desired memory-cell from the memory cell of the array. The memory macro also includes a control-section macro having a DC potential generating circuit for generating various DC potentials required to drive the sub-memory macros. At least one of the sub-memory macros is combined with the control-section macro to form the memory macro as a one-chip memory capable of storing an integral multiple of N bits.
摘要:
A data register that stores the data corresponding to the selected memory cell in a memory cell array is provided near the memory cell array. A decoder that selects the data from the data register starts decoding in response to an address signal accessing the memory cells in synchronization with a clock signal determining the operation period. In the first half of an operation period of the clock signal, the decoder outputs a signal in response to a signal corresponding to the address signal determined in the preceding operation period. According to the output of the decoder, the data register is selected. In the latter half of the operation period, a signal corresponding to a new address signal for the next operation period is transferred to the decoder. By doing this, the output control signal in the decoder is caused to synchronize with a signal driving an address signal, enabling the proper address to be selected without fail.
摘要:
A semiconductor memory device includes a memory cell array, row decoder, bit line pairs, sense amplifier, sense amplifier control circuit, data latch, transfer gate, transfer gate control circuit, and write circuit. The memory cell array has dynamic memory cells arranged in an array form. The row decoder decodes a row address signal to select a desired one of rows of the memory cell array. Each of the bit line pairs is connected to those of the memory cells which are arranged on a corresponding one of columns of the memory cell array. The sense amplifier amplifies data read out on the paired bit lines and positively feeding data back to the paired bit lines to hold the data. The sense amplifier control circuit controls the operation of the sense amplifier. The data latch latches readout data and write data. The transfer gate transfers data between the data latch and the sense amplifier. The transfer gate control circuit controls the transfer gate. The write circuit writes data into the data latch in synchronism with a clock signal. At the time of writing data into the memory cells, data is previously supplied to the data latch by the write circuit and latched in the data latch, and after the transfer gate control circuit controls the transfer gate to supply data to the bit line pairs from the data latch, the sense amplifier control circuit activates the sense amplifier.
摘要:
A semiconductor memory device includes a sense amplifier which senses data read out from a memory cell, a transfer gate coupled to an output of the sense amplifier, and a data latch circuit coupled to the transfer gate. The data latch circuit includes two MOS transistors of a same conductivity type connected in series between a pair of I/O data lines. The gates of the two MOS transistors are cross-coupled to the data lines respectively, thereby enabling a rapid data transfer between the memory cell and a data bus.
摘要:
An LSI chip has a main surface occupied by a logic section, a data input/output section and a memory macro section. The memory macro section is a rectangular section arranged on the main surface of the LSI chip. A test control circuit is arranged along one side of the memory macro section. A data input/output circuit is arranged along another side of the memory macro section. The test control circuit may be arranged along one side of the LSI chip. Test data is supplied from the test control circuit to the data input/output circuit through a data bus. As a result, a load of designing a memory logic LSI can be lightened.
摘要:
A taste improving agent containing as an active ingredient a whey mineral satisfying all the criteria (a), (b), (c), (d), and (e) below: (a) an ash content in an solid portion of the whey mineral is 25 to 75% by mass; (b) a calcium content in a solid portion of the whey mineral is less than 2% by mass; (c) a calcium content in an ash portion of the whey mineral is less than 5% by mass; (d) a lactic acid content in a solid portion of the whey mineral is 1.0% by mass or more; and (e) a pH of an aqueous solution containing 0.1% by mass of a solid portion of the whey mineral is 6.0 to 7.5.