摘要:
A transparent electrically-conductive film of the present invention comprises a transparent film substrate, a hard coat layer formed on one side of the transparent film substrate, a SiOx layer with a thickness of 10 nm to 300 nm that is formed on the hard coat layer by a dry process, and a transparent electrically-conductive thin layer with a thickness of 20 nm to 35 nm that is formed on another side of the transparent film substrate. The transparent electrically-conductive film has good resistance to moisture and heat and high durability against pen-based input and can be prevented from cracking during a punching process and also prevented from waving or curling even in a high-temperature, high-humidity environment.
摘要:
A transparent electrically-conductive film of the present invention comprises a transparent film substrate, a hard coat layer formed on one side of the transparent film substrate, a SiOx layer with a thickness of 10 nm to 300 nm that is formed on the hard coat layer by a dry process, and a transparent electrically-conductive thin layer with a thickness of 20 nm to 35 nm that is formed on another side of the transparent film substrate. The transparent electrically-conductive film has good resistance to moisture and heat and high durability against pen-based input and can be prevented from cracking during a punching process and also prevented from waving or curling even in a high-temperature, high-humidity environment.
摘要:
An object of the invention is to provide a transparent conductive film having good processability and to provide a method for production thereof. The pressure-sensitive adhesive layer-carrying transparent conductive film of the invention comprises: an amorphous transparent conductive laminate comprising a transparent plastic film substrate and an amorphous transparent conductive thin film provided on one side of the transparent plastic film substrate; a pressure-sensitive adhesive layer; and a release film that is provided on another side of the transparent plastic film substrate with the pressure-sensitive adhesive layer interposed therebetween and comprises at least a film substrate, wherein the release film is thicker than the amorphous transparent conductive laminate, and a value obtained by subtracting the thermal shrinkage percentage of the release film in the MD direction from the thermal shrinkage percentage of the amorphous transparent conductive laminate in the MD direction is from −0.3% to 0.45%.
摘要:
A process for producing a transparent conductive laminate having a completely crystallized, transparent conductive layer on a substrate comprising an organic polymer molding is provided. The transparent conductive layer is excellent in transparency and wet heat confidence, is not excessively low in specific resistivity, and has no variation on optical properties such as retardation characteristic. The transparent conductive laminate is obtained by sputter-film forming a transparent conductive layer on a substrate comprising an organic polymer molding under conditions of a substrate temperature of 80-150° C. and a degree of vacuum of 8×10−3 Pa or lower to form an amorphous transparent conductive layer comprising an In.Sn composite oxide having an amount of Sn atom of 1-6 % by weight based on the total weight of In atom and Sn atom and having a film thickness of 15-30 nm, a Hall mobility of 15-28 cm2 V·S, and a carrier density of 2×1020/cm3 to 5×1020/cm3, and heat treating the layer at a temperature lower than 120° C., to convert it into a completely crystallized transparent conductive layer having a Hall mobility of 30-45 cm2/V·S and a carrier density of 2×1020/cm3 to 7×1020/cm3.
摘要翻译:提供了一种制造在包含有机聚合物成型体的基板上具有完全结晶的透明导电层的透明导电层压体的方法。 透明导电层的透明性和湿热置信度优异,电阻率不低,对延迟特性等光学特性没有变化。 在基板温度为80-150℃,真空度为8×10 -3 Pa以下的条件下,在包含有机聚合物成型体的基板上溅射成膜,形成透明导电性层叠体 形成非晶透明导电层,其包含相对于In原子和Sn原子的总重量为15〜30nm的Sn原子量为1-6重量%的In.Sn复合氧化物, 霍尔迁移率为15-28cm 2,载体密度为2×10 20 / cm 3至5×10 20 / cm 3,并在低于120℃的温度下对该层进行热处理 将其转化为具有30-45cm 2 / Vs的霍尔迁移率和2×10 20 / cm 3至7×10 20 / cm 3的载流子密度的完全结晶的透明导电层 。
摘要:
A process for producing a transparent conductive laminate having a completely crystallized, transparent conductive layer on a substrate comprising an organic polymer molding is provided. The transparent conductive layer is excellent in transparency and wet heat confidence, is not excessively low in specific resistivity, and has no variation on optical properties such as retardation characteristic. The transparent conductive laminate is obtained by sputter-film forming a transparent conductive layer on a substrate comprising an organic polymer molding under conditions of a substrate temperature of 80-150° C. and a degree of vacuum of 8×10−3 Pa or lower to form an amorphous transparent conductive layer comprising an In.Sn composite oxide having an amount of Sn atom of 1-6 % by weight based on the total weight of In atom and Sn atom and having a film thickness of 15-30 nm, a Hall mobility of 15-28 cm2 V·S, and a carrier density of 2×1020/cm3 to 5×1020/cm3, and heat treating the layer at a temperature lower than 120° C., to convert it into a completely crystallized transparent conductive layer having a Hall mobility of 30-45 cm2/V·S and a carrier density of 2×1020/cm3 to 7×1020/cm3.
摘要:
A transparent conductive laminate includes a coating film including a first transparent resin film and a coating layer or layers provided on one or both sides of the first transparent resin film; a transparent conductive film including a second transparent resin film and a transparent conductive layer provided on one side of the second transparent resin film; and a pressure-sensitive adhesive layer interposed between the coating film and the transparent conductive film, wherein the coating layer of the coating film is laminated with the pressure-sensitive adhesive layer to a side of the transparent conductive film where the transparent conductive layer is not provided, the pressure-sensitive adhesive layer has a storage elastic modulus of 80,000 Pa or less at 120° C., and the adhesive strength between the pressure-sensitive adhesive layer and the coating layer is from 5 N/25 mm to 20 N/25 mm.
摘要:
A transparent conductive laminate includes a coating film including a first transparent resin film and a coating layer or layers provided on one or both sides of the first transparent resin film; a transparent conductive film including a second transparent resin film and a transparent conductive layer provided on one side of the second transparent resin film; and a pressure-sensitive adhesive layer interposed between the coating film and the transparent conductive film, wherein the coating layer of the coating film is laminated with the pressure-sensitive adhesive layer to a side of the transparent conductive film where the transparent conductive layer is not provided, the pressure-sensitive adhesive layer has a storage elastic modulus of 80,000 Pa or less at 120° C., and the adhesive strength between the pressure-sensitive adhesive layer and the coating layer is from 5 N/25 mm to 20 N/25 mm.
摘要:
A method of manufacturing a transparent conductive film has the steps of: preparing a laminated body in which a transparent conductive layer that is not patterned is formed on a flexible transparent base, removing a part of the transparent conductive layer to form the pattern forming part having the transparent conductive layer on the flexible transparent base and the pattern opening part not having the transparent conductive layer on the flexible transparent base, and heating the laminated body in which the transparent conductive layer is patterned. The absolute value of the difference H1-H2 of the dimensional change rate H1 of the pattern forming part and the dimensional change rate H2 of the pattern opening part in the heat treatment step is preferably less than 0.03%.
摘要:
A method of manufacturing a transparent conductive film has the steps of: preparing a laminated body in which a transparent conductive layer that is not patterned is formed on a flexible transparent base, removing a part of the transparent conductive layer to form the pattern forming part having the transparent conductive layer on the flexible transparent base and the pattern opening part not having the transparent conductive layer on the flexible transparent base, and heating the laminated body in which the transparent conductive layer is patterned. The absolute value of the difference H1-H2 of the dimensional change rate H1 of the pattern forming part and the dimensional change rate H2 of the pattern opening part in the heat treatment step is preferably less than 0.03%.
摘要:
A touch type liquid-crystal display device has a liquid-crystal display panel having flexibility, a touch panel provided to adhere closely to a back side, opposite to a visual side, of the liquid-crystal display panel, and electrodes disposed to be opposite to each other through a gap. The electrodes are capable of coming into partial contact with each other by a pressing force to thereby detect an input position.