Abstract:
A wafer level packaging method includes the following steps. A first wafer is bonded over a second wafer. A first grinding process on the first wafer is performed, to remove an upper chamfered edge of the first wafer and reduce a thickness of the first wafer. A trimming process is performed on the first wafer, to remove a lower chamfered edge of the first wafer to form a trimmed first wafer. A second grinding process is performed on the trimmed first wafer, to reduce a thickness of the trimmed first wafer.
Abstract:
The present invention relates to a CMOS image sensor device and a method of forming the same. The CMOS image sensor device includes a substrate, a deep trench isolation (DTI), a photodiode, an electrode and an interface region. The DTI and the photodiode are both disposed in the substrate. The electrode is disposed on the DTI. The interface region is formed adjacent to the DTI.
Abstract:
A wafer level packaging method includes the following steps. A first wafer is bonded over a second wafer. A first grinding process on the first wafer is performed, to remove an upper chamfered edge of the first wafer and reduce a thickness of the first wafer. A trimming process is performed on the first wafer, to remove a lower chamfered edge of the first wafer to form a trimmed first wafer. A second grinding process is performed on the trimmed first wafer, to reduce a thickness of the trimmed first wafer.
Abstract:
A stacked semiconductor device is provided, including a first semiconductor structure, a second semiconductor structure and a bonding structure disposed between the first and second semiconductor structures. The first semiconductor structure and the second semiconductor structure include first conductive pillars and second conductive pillars, respectively. The first semiconductor structure is stacked above the second semiconductor structure. The bonding structure contacts the first conductive pillars and the second conductive pillars, wherein the bonding structure comprises conductive paths for electrically connecting the first conductive pillars and the second conductive pillars.
Abstract:
A photodetector includes a substrate, at least one nanowire and a cladding layer. The at least one nanowire is disposed on the substrate and has a semiconductor core. The cladding layer is disposed on sidewalls of the semiconductor core and includes an epitaxial semiconductor film in contact with the sidewalls of the semiconductor core, a metal film disposed on the outside of the epitaxial semiconductor film and a high-k material layer disposed on the outside of metal film.
Abstract:
A stacked semiconductor structure includes a first wafer, a second wafer, a first insulting layer, and a second insulating layer. The first wafer includes a first front surface, a first back surface, and a first interconnection structure. The first interconnection structure includes at least a first top metal layer exposed on the first front surface of the first wafer. The second wafer includes a second front surface, a second back surface, and a second interconnection structure. The second interconnection structure includes at least a second top metal layer exposed on the second front surface of the second wafer. The first insulating layer is formed on the first front surface of the first wafer, and the second insulating layer is formed on the second front surface of the second wafer. The first insulating layer and the second insulating layer contact each other.