Abstract:
The production of linear alkylbenzene from a natural oil is provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
Abstract:
A linear alkyl benzene product and production of linear alkylbenzene from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
Abstract:
Processes for the production of linear alkylbenzenes from a renewable feedstock. Prior to converting the side chains of the glycerides and free fatty acids of the feedstock into hydrocarbons, the feedstock is separated into a stream rich in C10 and C14 free fatty acids glycerides having C10 and C14 fatty acid side chains and at least one, preferably two, other glyceride streams. The stream rich in glycerides having C10 and C14 fatty acid side chains can be converted via deoxygenation into a stream rich in C9 to C14 hydrocarbons while the other glyceride streams can be used as vegetable oil. A C10 to C13 hydrocarbon fraction from the stream rich in C9 to C14 hydrocarbons may be dehydrogenated to form olefins which may be reacted with benzene to form linear alkylbenzenes. The linear alkylbenzenes may be used to produce surfactants.
Abstract:
A method for producing jet-range hydrocarbons includes passing a renewable olefin feedstock comprising C3 to C8 olefins to an oligomerization reactor containing a zeolite catalyst to produce an oligomerized effluent, separating the oligomerized effluent into at least a C7− hydrocarbon stream, a heavy olefin stream, and a jet range olefin stream. At least a portion of the heavy olefin stream is recycled to the oligomerization reactor to dilute the renewable C4 olefin feedstock. The jet range olefin stream may be hydrotreated and separated to provide a jet range hydrocarbon product.
Abstract:
A linear alkyl benzene product and production of linear alkylbenzene from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
Abstract:
A linear alkyl benzene product and production of linear alkylbenzene from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
Abstract:
Process for producing alkylbenzenes from triglycerides, in particular triglycerides having 60% or more of alkyl chains having less than 16 carbon atoms are described. The process include a linear selective cracking process to crack C14+ chains into C9 to C14 chains which are useful for making linear alkylbenzene for use in detergents.
Abstract:
Processes for producing jet-range hydrocarbons includes splitting a renewable olefin feedstock comprising C3 to C8 olefins into a plurality of streams and passing each stream to an oligomerization reactor containing a zeolite catalyst to produce an oligomerized effluent. The reactors may be arranged in series, such that an oligomerized effluent comprises a diluent for a downstream reactor. The net oligomerized effluent may be separated and a heavy olefin stream comprising C8+ olefins may be hydrogenated and separated to provide a distillate range hydrocarbon product.
Abstract:
A method for producing jet-range hydrocarbons includes passing a renewable olefin feedstock comprising C3 to C8 olefins to an oligomerization reactor containing a zeolite catalyst to produce an oligomerized effluent, separating the oligomerized effluent into at least a light stream, and a heavy olefin stream. At least a first portion of the heavy olefin stream is recycled to the oligomerization reactor to dilute the renewable olefin feedstock. portion of heavy olefin stream may be hydrogenated and separated to provide a jet range hydrocarbon product.
Abstract:
A process for producing aviation fuel and diesel from renewable feedstock is described. This process involves introducing the renewable feedstock into a hydrogenation and deoxygenation zone, and separating the hydrocarbon effluent from the hydrogenation and deoxygenation zone into an aviation boiling range fraction and a diesel boiling range fraction. The aviation boiling range fraction and diesel boiling range fraction are alternately sent to the isomerization and selective hydrocracking zone. This allows for lower severity isomerization and selective hydrocracking zone operating conditions when processing oils that naturally contain medium and long carbon chains (C8-C18), such as coconut or palm kernel oil. The lower severity operation results in decreased cracking, increasing the yield of aviation fuel product.