摘要:
A semiconductor Dynamic Random Access Memory (DRAM) cell is fabricated using a vertical access transistor and a storage capacitor formed in a vertical trench. A Shallow Trench Isolation (STI) region is used as a masking region to confine the channel region of the access transistor, the first and second output regions of the access transistor, and a strap region connecting the second output region to the storage capacitor, to a narrow portion of the trench. The so confined second output region of the access transistor has reduced leakage to similar second output regions of adjacent memory cells. Adjacent memory cells can then be placed closer to one another without an increase in leakage and cross-talk between adjacent memory cells.
摘要:
A semiconductor Dynamic Random Access Memory (DRAM) cell is fabricated using a vertical access transistor and a storage capacitor formed in a vertical trench. A Shallow Trench Isolation (STI) region is used as a masking region to confine the channel region of the access transistor, the first and second output regions of the access transistor, and a strap region connecting the second output region to the storage capacitor, to a narrow portion of the trench. The so confined second output region of the access transistor has reduced leakage to similar second output regions of adjacent memory cells. Adjacent memory cells can then be placed closer to one another without an increase in leakage and cross-talk between adjacent memory cells.
摘要:
The methods and structures of the present invention involve providing a vertical dynamic random access memory (DRAM) cell device comprising a buried strap which can be laterally constrained, thereby maintaining freedom from cross talk, even at 6F2 scaling, in the absence of adjacent Shallow Trench Isolation (STI). The methods and structures of the present invention involve the further recognition that the STI can therefore be vertically confined, freed of any need to extend down below the level of the buried strap. The reduction of the buried strap to 1F width and the concomitant reduction in the depth of the STI together permit a significantly reduced aspect ratio, permitting critically improved manufacturability.
摘要:
Processing of a DRAM device containing vertical MOSFET arrays proceeds through planarization of the array gate conductor (GC) polysilicon of the vertical MOSFET to the top surface of the top oxide. A thin polysilicon layer is deposited over the planarized surface and an active area (M) pad nitride and tetraethyl orthosilicate (TEOS) stack is deposited. The M mask is used to open the pad layer to the silicon surface, and shallow trench isolation (STI) etching is used to form isolation trenches. An AA oxidation is performed, the isolation trenches are filled with high density plasma (HDP) oxide and planarized to the top surface of the AA pad nitride. Following isolation trench (IT) planarization, the AA pad nitride is stripped, with the thin silicon layer serving as an etch stop protecting the underlying top oxide. The etch support (ES) nitride liner is deposited, and the ES mask is patterned to open the support areas. The ES nitride, thin polysilicon layer and top oxide are etched from the exposed areas. A sacrificial oxidation is applied along with well implants, support gate oxidation and support gate polysilicon deposition. Using the etch array (EA) mask, the support gate polysilicon is opened in the array. The ES nitride is removed selective to the underlying silicon layer, protecting the top oxide. The gate stack is deposited and patterned and the process continues to completion.
摘要:
Methods and devices that provide improved isolation and alignment of gate conductors or gate contacts of vertical transistors in deep trench memory cells. A method for forming a vertical gate contact of a vertical transistor includes an oxide spacer formation process that prevents defects, such as shorts caused by voids filled with polysilicon, resulting from etching processes that are performed during fabrication of a vertical transistor, and enables formation of well-defined contact plugs for gate contacts, providing improved alignment structures.
摘要:
A memory cell is formed in a memory cell array comprised of a plurality of memory cells arranged in rows and columns. A deep trench structure is formed within a semiconductor substrate and includes at least one conducting region. A patterned bit line structure is formed atop of, and electrically isolated from, the insulating region of the deep trench structure and atop of, but contacting at least part of, regions of the semiconductor substrate. Exposed portions of the semiconductor substrate are etched to form at least one isolation trench adjoining the deep trench structure using the patterned bit line structure as an etch mask. The isolation trench is filled with a dielectric material. A contact region to the conducting region of the deep trench structure is formed within the dielectric material of the isolation trench and is electrically isolated from the bit line structure. A word line structure that connects to the contact region is formed and is at least partly atop of, but electrically isolated from, the bit line structure.
摘要:
A method for fabricating a buried strap forms a dielectric collar along sidewalls of a trench. The trench is formed in a substrate. The trench is filled with a conductive material and the conductive material is recessed in the trench to expose a portion of the collar. A masking layer is deposited in the trench over the exposed portion of the collar. A portion of the masking layer is removed over one side of the collar and a portion of the collar is etched on the one side. A buried strap is formed on the conductive material, which connects to the substrate on the one side.
摘要:
Under one aspect, a field effect device includes a gate, a source, and a drain, with a conductive channel between the source and the drain; and a nanotube switch having a corresponding control terminal, said nanotube switch being positioned to control electrical conduction through said conductive channel. Under another aspect, a field effect device includes a gate having a corresponding gate terminal; a source having a corresponding source terminal; a drain having a corresponding drain terminal; a control terminal; and a nanotube switching element positioned between one of the gate, source, and drain and its corresponding terminal and switchable, in response to electrical stimuli at the control terminal and at least one of the gate, source, and drain terminals, between a first non-volatile state that enables current flow between the source and the drain and a second non-volatile state that disables current flow between the source and the drain.
摘要:
Under one aspect, non-volatile transistor device includes a source and drain with a channel in between; a gate structure made of a semiconductive or conductive material disposed over an insulator over the channel; a control gate made of a semiconductive or conductive material; and an electromechanically-deflectable nanotube switching element in fixed contact with one of the gate structure and the control gate structure and is not in fixed contact with the other of the gate structure and the control gate structure. The device has a network of inherent capacitances, including an inherent capacitance of an undeflected nanotube switching element in relation to the gate structure. The network is such that the nanotube switching element is deflectable into contact with the other of the gate structure and the control gate structure in response to signals being applied to the control gate and one of the source region and drain region.
摘要:
Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.