摘要:
The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of “cycles” of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.
摘要:
Microstructure devices, methods of forming a microstructure device and a method of forming a MEMS device are described. According to one aspect, a microstructure device includes: a semiconductive substrate; a monolithic microstructure device feature coupled with the semiconductive substrate, and wherein at least a portion of the microstructure device feature is configured to move relative to the semiconductive substrate; and a conductive structure provided directly upon the microstructure device feature.
摘要:
Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.
摘要:
A nonvolatile resistive memory element includes a host oxide formed from an interfacial oxide layer. The interfacial oxide layer is formed on the surface of a deposited electrode layer via in situ or post-deposition surface oxidation treatments. The switching performance of a resistive memory device based on such an interfacial oxide layer is equivalent or superior to the performance of a conventional resistive memory element.
摘要:
Methods for producing RRAM resistive switching elements having optimal switching behavior include crystalline phase structural changes. Structural changes indicative of optimal switching behavior include hafnium oxide phases in an interfacial region between a resistive switching layer and an electrode.
摘要:
A method of planarizing a semiconductor device is provided. The semiconductor device includes a substrate, first and second components provided on the surface of the substrate, and a first material provided between and above the first and second components. The first component has a height greater than a height of the second component. The method includes performing a first polishing step on the semiconductor device to remove the first material above a top surface of the first component, to remove the first material above a top surface of the second component, and to level the top surface of the first component. The method also includes performing a second polishing step on the semiconductor device to planarize the top surfaces of the first and second components.
摘要:
Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.
摘要:
A nonvolatile resistive memory element includes a host oxide formed from an interfacial oxide layer. The interfacial oxide layer is formed on the surface of a deposited electrode layer via in situ or post-deposition surface oxidation treatments.
摘要:
Methods for producing RRAM resistive switching elements having optimal switching behavior include crystalline phase structural changes. Structural changes indicative of optimal switching behavior include hafnium oxide phases in an interfacial region between a resistive switching layer and an electrode.
摘要:
Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies. Therefore, the metal oxide film stacks have improved switching performance and reliability during memory cell applications compared to traditional hafnium oxide based stacks of previous memory cells.