摘要:
A ceramic honeycomb structure is disclosed which includes a ceramic honeycomb body having a matrix of partition walls forming a multiplicity of cells extending in an axial direction of the honeycomb body. The radially outermost array of the cells are open to an outside of the honeycomb body in radial directions thereof, to provide a plurality of grooves formed in an outer periphery of the honeycomb body to extend in the axial direction. The honeycomb structure further includes an outer coating which fills at least the grooves to cover the outer periphery of the ceramic honeycomb body, so as to provide an outer surface of the honeycomb structure. Also disclosed are a process of producing such a honeycomb structure, and a coating material used for forming the outer coating as described above.
摘要:
A cordierite ceramic filter is formed by mixing cordierite powders having a porosity of more than 30% as aggregate with raw materials for cordierite generation, poring agents, forming agents and solvents to obtain a ceramic batch, extruding the ceramic batch into a honeycomb shape to obtain a formed body, and firing the formed body. The cordierite ceramic filter has a mean pore size in a range of aggregate mean size.times.0.15.+-.5 .mu.m, has a porosity of more than 30% and has a compressive strength more than 100 kgf/cm.sup.2 in a direction parallel to a flow passage. The cordierite ceramic filter has an excellent filter regeneration function, has a high mechanical strength and is light and compact.
摘要翻译:堇青石陶瓷过滤器通过混合孔隙率大于30%的堇青石粉末作为骨料与堇青石生成原料,成型剂和溶剂混合而成,得到陶瓷批料,将陶瓷批料挤出成蜂窝状,得到 成形体,并且烧成成形体。 堇青石陶瓷过滤器的平均孔径在总均匀度为15±5 +/-5μm的范围内,具有大于30%的孔隙率,并且在平行于...的方向上具有大于100kgf / cm 2的抗压强度 流通道 堇青石陶瓷过滤器具有优异的过滤器再生功能,机械强度高,结构紧凑。
摘要:
A honeycomb regenerator for receiving a waste heat in an exhaust gas by passing an exhaust gas and a gas to be heated alternately therethrough, which is constructed by stacking a plurality of honeycomb structural bodies, is disclosed. In the honeycomb regenerator according to the invention, cell open rates of the honeycomb structural bodies positioned at an inlet portion of the exhaust gas and at an inlet portion of the gas to be heated are larger than those of the honeycomb structural bodies positioned at a center portion.
摘要:
A production method of a honeycomb structure is provided. The production method of a thin wall cordierite honeycomb structure having cordierite as the main component of the crystalline phase includes: adding a forming auxiliary agent to a cordierite material to obtain a mixture, kneading the mixture to obtain a material batch, forming the material batch by extrusion to form a honycomb compact, drying the honeycomb compact to obtain a dried body, and firing the dried body. The cordierite material batch contains 65% by weight or more flat plate-like cordierite raw material including crystal water made from talc, kaolin and aluminum hydroxide with the BET specific surface areas for the cordierite raw materials being 7 to 18 m.sup.2 /g of talc, 14 to 22 m.sup.2 /g of kaolin and 6 to 18 m.sup.2 /g of aluminum hydroxide. The method can realize a thinner wall and a higher cell density and can improve the formability (in particular, the lubricity and the shape stability) at the time of extruding, the mechanical strength (hydrostatic pressure fracture strength), and the catalyst carrying characteristics.
摘要:
A process for producing a cordierite-based ceramic honeycomb structure, includes kneading raw materials for cordierite with a forming aid to obtain a raw material batch, subjecting the raw material batch to obtain a honeycomb structure, and subjecting the honeycomb structure to drying and firing in this order to obtain a ceramic honeycomb structure whose crystal phase is composed mainly of cordierite. The raw material batch contains 65% by weight or more of raw materials for cordierite, comprising talc, kaolin and aluminum hydroxide and having crystal water. The kaolin has an average particle diameter of 5 &mgr;or more and a BET specific surface area of 10 m2/g or less and is contained in the raw material batch in an amount of 10% or more by weight. Formability during extruding, particularly lubricity and shape stability, are improved, for producing cordierite-based ceramic honeycomb structure having thin partition walls and high cell density, and improved mechanical strength (isostatic fracture strength) and improved catalyst coatability.
摘要:
Cordierite honeycomb ceramics comprises a cordierite phase as a main ingredient. A value of [Fe.sub.2 O.sub.3 wt %/(MgO wt %+Fe.sub.2 O.sub.3 wt %)].times.100 is 2-10, where a ferric component is calculated as Fe.sub.2 O.sub.3. A thermal expansion coefficient of the cordierite honeycomb ceramics is less than 0.5.times.10.sup.-6 /.degree. C. within a temperature range of 40.degree.-800.degree. C. in a direction parallel to a flow passage of a honeycomb body. In the cordierite honeycomb ceramics including a ferric component, a ferric component is added from a talc as raw materials. The cordierite honeycomb ceramics having a low thermal expansion coefficient is obtained by mixing raw materials for cordierite generation to obtain a batch, extruding the batch into a honeycomb formed body, drying the honeycomb formed body, and firing the dried honeycomb formed body at a temperature range of 1350.degree.-1450.degree. C. After that, the sintered honeycomb body is immersed in an acid solution if necessary.
摘要翻译:堇青石蜂窝陶瓷以堇青石相为主要成分。 [Fe 2 O 3重量%/(MgO wt%+ Fe 2 O 3重量%)]×100的值为2-10,其中铁分量计算为Fe 2 O 3。 堇青石蜂窝陶瓷的热膨胀系数在与蜂窝体的流路平行的方向上在40℃-800℃的温度范围内小于0.5×10 -6 /℃。 在包含铁成分的堇青石蜂窝陶瓷中,以滑石为原料添加铁成分。 具有低热膨胀系数的堇青石蜂窝陶瓷通过将堇青石生成原料混合得到批料,将该批料挤出成蜂窝成型体,干燥蜂窝成形体,并将干燥的蜂窝成形体在温度范围 1350°-1450℃。之后,如果需要,将烧结的蜂窝体浸入酸溶液中。
摘要:
A production method of a cordierite ceramic honeycomb structure is provided. 0.1 to 2% by weight of a nonionic polyether lubricant, obtained by adding ethylene oxide and propylene oxide to polyhydric alcohol with an ethylene oxide:propylene oxide ratio of 10:90 to 100:0 by weight, is added to the cordierite material batch for extruding. The honeycomb structure has a thin partition wall, and is suitable for the mass production by improving the formability (in particular, the lubricity and the shape stability) in extruding.
摘要:
There are newly provided an index which quantitatively indicates shapes of kaolin particles, and a method of measuring the index. There is also provided a method of manufacturing a low-thermal-expansion honeycomb structure suitable for an application such as a car exhaust gas purifying catalyst carrier by use of the kaolin particles whose index is not less than a predetermined value. A certain amount of kaolin particles 1 are pressed and filled into a container 2, peak intensities of the kaolin particles 1 in (200), (020), and (002) faces are measured by X-ray diffraction, respectively, and a cleavage index of the kaolin particles 1 is calculated from the resultant measured values by the following equation (1): Cleavage index=(002)/[(200)+(020)+(002)] (Equation 1), wherein (200), (020), and (002) denote values of the peak intensities of the kaolin particles measured in the (200), (020), and (002) faces by the X-ray diffraction, respectively.
摘要:
There are newly provided an index which quantitatively indicates shapes of kaolin particles, and a method of measuring the index. There is also provided a method of manufacturing a low-thermal-expansion honeycomb structure suitable for an application such as a car exhaust gas purifying catalyst carrier by use of the kaolin particles whose index is not less than a predetermined value. A certain amount of kaolin particles 1 are pressed and filled into a container 2, peak intensities of the kaolin particles 1 in (200), (020), and (002) faces are measured by X-ray diffraction, respectively, and a cleavage index of the kaolin particles 1 is calculated from the resultant measured values by the following equation (1): Cleavage index=(002)/[(200)+(020)+(002)] (1), wherein (200), (020), and (002) denote values of the peak intensities of the kaolin particles measured in the (200), (020), and (002) faces by the X-ray diffraction, respectively.
摘要:
A honeycomb regenerator is constructed by (a) honeycomb structural bodies arranged in a high temperature portion, in which a temperature is over 1250° C. during a normal operation, made of aluminum-titanate or a combination of aluminum-titanate and mullite, and (b) honeycomb structural bodies arranged in a low temperature portion, made of cordierite and/or mullite, or by (a) honeycomb structural bodies arranged in a high temperature portion, to which an exhaust gas having a high temperature is contacted, made of aluminum-titanate or a combination of aluminum-titanate and mullite, (b) honeycomb structural bodies arranged in a middle temperature portion made of alumina and (c) honeycomb structural bodies arranged in a low temperature portion made of one material or a combination of materials selected from a group of cordierite, mullite and a porcelain. The honeycomb regenerator according to the invention can perform a heat exchanging operation effectively even in an exhaust gas having a high temperature and also in an exhaust gas having a high temperature and a corrosive property.