摘要:
The disclosure features a wireless power transmission system for an elevator that includes at least two wireless power sources disposed at intervals along a wall of an elevator shaft and coupled to a power supply, and at least one wireless power receiving device configured to be mounted to an exterior of an elevator cab and to be coupled to a load onboard the elevator cab, where during operation, the at least two wireless power sources are configured to generate an oscillating magnetic field to transfer wireless energy to the at least one wireless power receiving device.
摘要:
Techniques herein provide wireless energy transfer to audio devices such as headphones, headsets, hearing aids, and the like. Audio devices are integrated with a device resonator. The device resonator may be positioned and oriented to reduce interaction with lossy or sensitive components of the audio device. A repeater resonator and/or a source resonator is integrated into a headrest of a seat or a chair providing continuous power to the headphones while in use. The audio devices may be recharged wirelessly when positioned near source resonators that may be embedded in pads, tables, carrying cases, cups, and the like.
摘要:
Techniques herein provide wireless energy transfer to audio devices such as headphones, headsets, hearing aids, and the like. Audio devices are integrated with a device resonator. The device resonator may be positioned and oriented to reduce interaction with lossy or sensitive components of the audio device. A repeater resonator and/or a source resonator is integrated into a headrest of a seat or a chair providing continuous power to the headphones while in use. The audio devices may be recharged wirelessly when positioned near source resonators that may be embedded in pads, tables, carrying cases, cups, and the like.
摘要:
Techniques herein provide wireless energy transfer to audio devices such as headphones, headsets, hearing aids, and the like. Audio devices are integrated with a device resonator. The device resonator may be positioned and oriented to reduce interaction with lossy or sensitive components of the audio device. A repeater resonator and/or a source resonator is integrated into a headrest of a seat or a chair providing continuous power to the headphones while in use. The audio devices may be recharged wirelessly when positioned near source resonators that may be embedded in pads, tables, carrying cases, cups, and the like.
摘要:
Techniques herein provide wireless energy transfer to audio devices such as headphones, headsets, hearing aids, and the like. Audio devices are integrated with a device resonator. The device resonator may be positioned and oriented to reduce interaction with lossy or sensitive components of the audio device. A repeater resonator and/or a source resonator is integrated into a headrest of a seat or a chair providing continuous power to the headphones while in use. The audio devices may be recharged wirelessly when positioned near source resonators that may be embedded in pads, tables, carrying cases, cups, and the like.
摘要:
A wireless energy transfer system includes wirelessly powered footwear. Device resonators in footwear may capture energy from source resonators. Captured energy may be used to generate thermal energy in the footwear. Wireless energy may be generated by wireless warming installations. Installations may be located in public locations and may activate when a user is near the installation. In some cases, the warming installations may include interactive displays and may require user input to activate energy transfer.
摘要:
Techniques herein provide wireless energy transfer to audio devices such as headphones, headsets, hearing aids, and the like. Audio devices are integrated with a device resonator. The device resonator may be positioned and oriented to reduce interaction with lossy or sensitive components of the audio device. A repeater resonator and/or a source resonator is integrated into a headrest of a seat or a chair providing continuous power to the headphones while in use. The audio devices may be recharged wirelessly when positioned near source resonators that may be embedded in pads, tables, carrying cases, cups, and the like.
摘要:
A wireless power network including multiple electromagnetic resonators each capable of storing electromagnetic energy at a resonant frequency is disclosed. The multiple resonators include: a first resonator configured to be coupled to a power source to receive power from the power source; a second resonator configured to be coupled to a load to provide power to the load, and one or more intermediate resonators. The first resonator is configured to provide power from the power source to the second resonator through the one or more intermediate resonators. At least a first pair of resonators among the multiple resonators is configured to exchange power wirelessly, and at least a second pair of the resonators among the multiple resonators is configured to exchange power through a wired electrically conductive connection.
摘要:
The disclosure features a wireless power transmission system for an elevator that includes at least two wireless power sources disposed at intervals along a wall of an elevator shaft and coupled to a power supply, and at least one wireless power receiving device configured to be mounted to an exterior of an elevator cab and to be coupled to a load onboard the elevator cab, where during operation, the at least two wireless power sources are configured to generate an oscillating magnetic field to transfer wireless energy to the at least one wireless power receiving device.
摘要:
A wireless power network including multiple electromagnetic resonators each capable of storing electromagnetic energy at a resonant frequency is disclosed. The multiple resonators include: a first resonator configured to be coupled to a power source to receive power from the power source; a second resonator configured to be coupled to a load to provide power to the load, and one or more intermediate resonators. The first resonator is configured to provide power from the power source to the second resonator through the one or more intermediate resonators. At least a first pair of resonators among the multiple resonators is configured to exchange power wirelessly, and at least a second pair of the resonators among the multiple resonators is configured to exchange power through a wired electrically conductive connection.