摘要:
An optimal architecture for a polymer electrolyte battery, wherein one or more layers of electrolyte (e.g., solid block-copolymer) are situated between two electrodes, is disclosed. An anolyte layer, adjacent the anode, is chosen to be chemically and electrochemically stable against the anode active material. A catholyte layer, adjacent the cathode, is chosen to be chemically and electrochemically stable against the cathode active material.
摘要:
An electrode/electrolyte assembly that has a well-integrated interface between an electrode and a solid polymer electrolyte film, which provides continuous, ionically-conducting and electronically insulating paths between the films is provided. A slurry is made containing active electrolyte material, a liquefied, ionically-conductive first polymer electrolyte with dissolved lithium salt, and conductive additive. The binder may have been liquefied by dissolving in a volatile solvent or by melting. The slurry is cast or extruded as a thin film and dried or cooled to form an electrode layer that has some inherent porosity. A liquefied second polymer electrolyte that includes a salt is cast over the electrode film. Some of the liquefied second polymer electrolyte fills at least some of the pores in the electrode film and the rest forms an electrolyte layer on top of the electrode film. After solidifying by either drying or cooling, the dual-cast electrode assembly includes both an electrode with low porosity and an adjacent solid polymer electrolyte film. A lithium secondary battery that employs the novel electrode assembly is also provided.
摘要:
An electrode/electrolyte assembly that has a well-integrated interface between an electrode and a solid polymer electrolyte film, which provides continuous, ionically-conducting and electronically insulating paths between the films is provided. A slurry is made containing active electrolyte material, a liquefied, ionically-conductive first polymer electrolyte with dissolved lithium salt, and conductive additive. The binder may have been liquefied by dissolving in a volatile solvent or by melting. The slurry is cast or extruded as a thin film and dried or cooled to form an electrode layer that has some inherent porosity. A liquefied second polymer electrolyte that includes a salt is cast over the electrode film. Some of the liquefied second polymer electrolyte fills at least some of the pores in the electrode film and the rest forms an electrolyte layer on top of the electrode film. After solidifying by either drying or cooling, the dual-cast electrode assembly includes both an electrode with low porosity and an adjacent solid polymer electrolyte film. A lithium secondary battery that employs the novel electrode assembly is also provided.
摘要:
When electrode films are prepared for lithium electrochemical cells, problems are often encountered in laminating the films with an appropriate intervening electrolyte layer. This presents a significant challenge because proper alignment of the three layers and complete lamination at the interfaces are crucial to good cell performance. Often lamination is imperfect with gaps and defects at the interfaces. The disclosure herein describes a method of casting or extruding a polymer electrolyte directly onto an electrode film to create an electrode assembly with a continuous, defect-free interface. In some arrangements, there is some slight intermixing of the layers at the interface. A complete cell can be formed by laminating two such electrode assemblies to opposite sides of an additional electrolyte or to one another.
摘要:
An optimal architecture for a polymer electrolyte battery, wherein one or more layers of electrolyte (e.g., solid block-copolymer) are situated between two electrodes, is disclosed. An anolyte layer, adjacent the anode, is chosen to be chemically and electrochemically stable against the anode active material. A catholyte layer, adjacent the cathode, is chosen to be chemically and electrochemically stable against the cathode active material.
摘要:
When electrode films are prepared for lithium electrochemical cells, problems are often encountered in laminating the films with an appropriate intervening electrolyte layer. This presents a significant challenge because proper alignment of the three layers and complete lamination at the interfaces are crucial to good cell performance. Often lamination is imperfect with gaps and defects at the interfaces. The disclosure herein describes a method of casting or extruding a polymer electrolyte directly onto an electrode film to create an electrode assembly with a continuous, defect-free interface. In some arrangements, there is some slight intermixing of the layers at the interface. A complete cell can be formed by laminating two such electrode assemblies to opposite sides of an additional electrolyte or to one another.
摘要:
An incubator for maintaining a warm environment for infants includes a substantially elongated resting or bed surface which is surrounded by a hood. At least one side wall of the front side has closable access openings. An air outlet for supplying air into the hood and an air inlet for carrying air away from the hood are provided at the peripheral region of the resting surface. In the incubator, the air is guided to maintain a stable incubator air temperature to reduce heat losses from convection and radiation with the hood closed and, with the front side opened, the buildup of a stable warm-air curtain is promoted. For this purpose, the air outlet is disposed along the front side, and the air inlet is disposed along the rear side opposite this front side.
摘要:
A thermotherapy apparatus has a reclining surface (3) and an X-ray drawer (6) that can be retracted from the apparatus together when needed. A carrier (12) is located at the X-ray drawer (6) and can be connected to the reclining surface (3) in a preferred position.
摘要:
A microphase separated polymer has nano-domains and inorganic nanoparticles within at least one of the domains. The nanoparticle size is chosen to be substantially smaller than the domain size. For example, for the case of lamellar domains, the nanoparticle size is smaller than the width of the domain. This allows the nanoparticles to affect the bulk properties of the domain phase, such as the overall ionic conductivity or mechanical properties. The nanoparticles can be any of a number of inorganic oxides such as alumina, silica, or titania.
摘要:
An incubator has a transparent covering hood having at least one side wall on which two flaps are mounted for closing access openings formed in the side wall. The flaps are each provided with a hinge and closure element. The flaps and access openings are so configured that the maximum possible freedom of movement is provided for the person treating the patient while at the same time the smallest possible outlet area is attained to prevent heat and oxygen losses from within the incubator to the ambient. For this purpose, the access openings are configured to be elongated and so that their respective longitudinal axes conjointly define an upwardly facing obtuse angle. To improve visibility for observing the premature infant and to improve ergonomically correct actuation of the operating elements, both the hinge and the closure element are located together on one side of the flap.