摘要:
A Magnetic Resonance Imaging (MRI) enhancement agent includes a plurality of particles, each particle including: a metal core; a dielectric shell disposed on the metal core comprising at least one MRI contrast agent; and a metal shell disposed on the exterior surface of the dielectric shell that encapsulates the dielectric shell.
摘要:
A method includes providing a resonant thermal oscillator in a thermofluidic system having at least two counter-flowing liquid streams separated by at least a spectrum absorbing material, wherein the spectrum absorbing material is hydrophobic, light-absorbing, and photothermal, and adjusting a flow rate in at least one of the counter-flowing liquid streams to maximize heat transfer between the at least two counter-flowing liquid streams.
摘要:
In some embodiments, the present disclosure pertains to systems and methods for distilling a fluid by exposing the fluid to a porous membrane that includes a surface capable of generating heat. In some embodiments, the heat generated at the surface propagates the distilling of the fluid by converting the fluid to a vapor that flows through the porous membrane and condenses to a distillate. In some embodiments, the surface capable of generating heat is associated with a photo-thermal composition that generates the heat at the surface by converting light energy from a light source to thermal energy. In some embodiments, the photo-thermal composition includes, without limitation, noble metals, semiconducting materials, dielectric materials, carbon-based materials, composite materials, nanocomposite materials, nanoparticles, hydrophilic materials, polymers, fibers, meshes, fiber meshes, hydrogels, hydrogel meshes, nanomaterials, and combinations thereof. Further embodiments pertain to methods of making the porous membranes of the present disclosure.
摘要:
In some embodiments, the present disclosure pertains to systems and methods for distilling a fluid by exposing the fluid to a porous membrane that includes a surface capable of generating heat. In some embodiments, the heat generated at the surface propagates the distilling of the fluid by converting the fluid to a vapor that flows through the porous membrane and condenses to a distillate. In some embodiments, the surface capable of generating heat is associated with a photo-thermal composition that generates the heat at the surface by converting light energy from a light source to thermal energy. In some embodiments, the photo-thermal composition includes, without limitation, noble metals, semiconducting materials, dielectric materials, carbon-based materials, composite materials, nanocomposite materials, nanoparticles, hydrophilic materials, polymers, fibers, meshes, fiber meshes, hydrogels, hydrogel meshes, nanomaterials, and combinations thereof. Further embodiments pertain to methods of making the porous membranes of the present disclosure.
摘要:
A nanosample capable of near-infrared light-triggered release of therapeutic molecules. The nanosample includes a plurality of nanocomplexes. Each of the nanocomplexes includes a nanoshell; a host molecule linked to the nanoshell; and a guest molecule linked to the host molecule. The nanoshell includes a shell. The nanocomplex has a plasmon resonance wavelength. When irradiated with electromagnetic radiation of the plasmon resonance wavelength, plasmon resonance of the nanocomplex releases the guest molecule. The nanoshell may also include a core, where the shell surrounds the core. The nanoshell may be a nanomatryoshka. A link between the nanoshell and the host molecule may be a gold-thiol interaction. The shell may include at least one metal, such as gold or silver. The core may be a liposome and/or silica. The host molecule may be: synthetic polymers, biopolymers, polynucleotides, nucleic acids, polypeptides, polysaccharides, polyterpenes, lipids, aptamers, and/or proteins. The guest molecule may be: pharmaceutical molecules, biopharmaceutical molecules, oligonucleotides, nucleic acids, dye molecules, and/or imaging contrast agents. The host molecule may be: aptamer, single-stranded DNA, double-stranded DNA, and/or human serum albumin. The guest molecule may be: docetaxel, lapatinib, and/or tumor necrosis factor alpha. The plasmon resonance wavelength may be in a near-infrared (NIR) water window.
摘要:
A magnetic resonance imaging enhancement agent includes a plurality of particles. Each particle including a metal core; a dielectric shell disposed on the metal core including water and at least one MRI contrast agent; and a metal shell disposed on the exterior surface of the dielectric shell that encapsulates the dielectric shell.
摘要:
A Magnetic Resonance Imaging (MRI) enhancement agent includes a plurality of particles, each particle including: a metal core; a dielectric shell disposed on the metal core comprising at least one MRI contrast agent; and a metal shell disposed on the exterior surface of the dielectric shell that encapsulates the dielectric shell.
摘要:
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
摘要:
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
摘要:
A metal-semiconductor-metal photodetecting device and method of manufacturing a metal-semiconductor-metal photodetecting device that includes a p-type silicon substrate with an oxide layer disposed on the p-type silicon substrate. Schotty junctions are disposed adjacent to the oxide layer on the p-type silicon substrate and a plasmonic grating disposed on the oxide layer. The plasmonic grating provides wavelength range selectability for the photodetecting device.