摘要:
A process for catalytic removal of a pollutant from a combustion installation exhaust gas includes calculating, from operationally relevant parameters of the installation, a pollutant concentration using a predetermined characteristic diagram. A predetermined quantity of a reagent is introduced into the exhaust per unit time as a function of the calculated pollutant concentration, the reagent reacting with the pollutant at a catalytic converter. Operating states of the installation with substantially constant pollutant emission levels are determined. The pollutant concentration during an operating state of the installation with a substantially constant pollutant emission level is determined with a sensor and only a pollutant concentration from the installation in a steady operating state is used to correct the diagram. The pollutant concentration from the installation is calculated with the diagram in a non-steady operating state. An apparatus for the catalytic removal of the pollutant from the exhaust gas is also provided.
摘要:
A method for cleaning diesel engine exhaust gas is described. The exhaust gas is passed over a catalytic converter with an active material which contains (% by weight) 70-95% TiO2, 2-10% WO3 and/or MoO3, 0.1-5% V2O5, 0.1-8% CaO, 0.1-8% Al2O3, 0.1-5% B2O3 and 0.1-10% SiO2. A reducing agent for a reduction of nitrogen oxides is metered into the exhaust-gas stream upstream of the catalytic converter.
摘要翻译:描述了一种用于清洁柴油发动机废气的方法。 废气通过含有(重量%)70-95%TiO 2,2-10%WO 3和/或MoO 3,0.1-5%V 2 O 5,0.1-8%CaO,0.1- 8%Al2O3,0.1-5%B2O3和0.1-10%SiO2。 将用于还原氮氧化物的还原剂计量到催化转化器上游的排气流中。
摘要:
A NO.sub.x reduction system includes an SCR catalytic converter and a metering assembly for reducing agent. A control unit for the reduction system is integrated together with the actuators and sensors as a functional unit at the reducing agent container. This provides savings in terms of lines and plug-in connections, and relieves the burden on the control unit of the internal combustion engine.
摘要:
Nitrogen oxides emitted by an internal-combustion engine operated with excess air are normally converted by the method of selective catalytic reduction by bringing the nitrogen oxides, together with ammonia, into contact with a selective catalyst. Due to the dangers associated with the use of ammonia, in a motor vehicle ammonia should only be carried in the form of a substance which liberates ammonia, generally an aqueous urea solution. A method and a device for introducing liquid into an exhaust-gas purification system according to the invention avoids frost damage to sections of the system during shutdown times and permits operation of the system at temperatures below the freezing point of the reducing agent solution being used. The method and device include a (thermally insulated) reservoir for the reducing agent liquid and a liquid supply line which is connected thereto and terminates in an outlet opening for the liquid. The reservoir and the liquid supply line can be heated. Furthermore, a heater is provided for liquefying a starting volume which is small as compared with the volume of the reservoir. The liquid supply line may also have a back-flush valve to which a gas that is under pressure can be applied. The supply line can consequently be blown free.
摘要:
A method and a device for decomposing nitrogen oxides in an exhaust gas of an internal combustion engine, include feeding the exhaust gas and a reactant which is sprayed into the exhaust gas through the use of compressed air, to a catalytic converter. A compressor for supplying compressed air is associated with the internal combustion engine, and part of the compressed air is diverted and used as the compressed air for injecting the reactant. The sprayed reactant is fed to the catalytic converter, together with the exhaust gas to be purified, which ensures the decomposition of the nitrogen oxides, in particular according to the method of selective catalytic reaction.
摘要:
A catalytic converter includes a metal carrier body, an adhesion-promoting intermediate layer in the form of an oxide film applied to the carrier body and a catalytically active layer applied to the intermediate layer. A method for producing a catalytic converter includes heating a metal carrier body in an oxidizing atmosphere to form an adhesion-promoting intermediate layer in the form of an oxide film on the carrier body and applying a catalytically active layer to the intermediate layer.
摘要:
A method is provided in which the reducing agent, during the starting phase of the internal-combustion engine and during operation with decreasing and, if appropriate, virtually constant exhaust gas temperature, is fed superstoichiometrically in relation to the nitrogen oxide concentration, while taking into account the temperature-dependent storage capacity of a denitration catalytic converter for the reducing agent. The reducing agent is otherwise fed substoichiometrically. In this manner, the catalytic converter is kept at all times at a preferred charge level, so that on one hand it is possible to provide sufficient stored reducing agent for the catalytic conversion and on the other hand it is possible to still have a reducing agent buffer available which avoids slip of the reducing agent. The invention can be used in all internal-combustion engines operated with air excess, such as diesel engines and lean-burn engines.
摘要:
A material composite that is vacuum-tight and resistant to thermal shocks is disclosed along with a method for the production thereof and to its use. A permanent connection between an aluminum oxide sapphire and an aluminum oxide ceramic is attained by a first connecting later comprised of a manganese-silicate glass, in which at least one of the metals molybdenum, tungsten, palladium or platinum is incorporated, and by a second connecting layer comprised of a manganese-silicate glass. To this end, the individual materials are fused by sintering. The material composite is used, for example, for inserting a window comprised of aluminum oxide sapphire into a housing for a light-ignitable thyristor.
摘要:
A configuration for decomposing nitrogen oxides in a gas stream includes a plurality of catalytic converters disposed one after the other through which the gas stream can flow. Each of the catalytic converters has a honeycomb structure with many parallel cells through which the gas stream can flow. Each of the catalytic converters also has a predetermined cell density and a predetermined average level of activity defined as a proportion by weight of the catalytically active agent. The predetermined cell density of a second catalytic converter through which the gas stream flows after a first catalytic converter is lower than the predetermined cell density of the first catalytic converter. The predetermined average level of activity of the second catalytic converter is also higher than the predetermined average level of activity of the first catalytic converter. The configuration is preferably used in conjunction with an exhaust gas from a combustion drive unit.
摘要:
Exhaust gas to be cleaned is introduced into a conversion and mixing duct and the exhaust gas flows through the duct along a predetermined longitudinal direction. A reducing agent, such as aqueous urea solution, is injected into the exhaust gas stream in the conversion and mixing duct. The exhaust gas stream is then deflected into a reaction duct which extends parallel to or coaxially around the conversion and mixing duct. The exhaust gas then flows in the opposite direction through the reaction duct. A reduction catalyst is disposed in the reaction duct, where the reducible components of the exhaust gas are reduced. The exhaust gas cleaned in this manner is then discharged from the reaction duct.