Method of pattern etching a low K dielectric layer
    1.
    发明授权
    Method of pattern etching a low K dielectric layer 失效
    图案蚀刻低K电介质层的方法

    公开(公告)号:US06331380B1

    公开(公告)日:2001-12-18

    申请号:US09549262

    申请日:2000-04-14

    IPC分类号: G03C558

    摘要: A first embodiment of the present invention pertains to a method of patterning a semiconductor device conductive feature while permitting easy removal of any residual masking layer which remains after completion of the etching process. A multi-layered masking structure is used which includes a layer of high-temperature organic-based masking material overlaid by either a patterned layer of inorganic masking material or by a layer of patterned high-temperature imageable organic masking material. The inorganic masking material is used to transfer a pattern to the high-temperature organic-based masking material and is then removed. The high-temperature organic-based masking material is used to transfer the pattern and then may be removed if desired. This method is also useful in the pattern etching of aluminum, even though aluminum can be etched at lower temperatures. A second embodiment of the present invention pertains to a specialized etch chemistry useful in the patterning of organic polymeric layers such as low k dielectrics, or other organic polymeric interfacial layers. This etch chemistry is useful for mask opening during the etch of a conductive layer or is useful in etching damascene structures where a metal fill layer is applied over the surface of a patterned organic-based dielectric layer. The etch chemistry provides for the use of etchant plasma species which minimize oxygen, fluorine, chlorine, and bromine content.

    摘要翻译: 本发明的第一实施例涉及一种图案化半导体器件导电特征的方法,同时允许容易地去除在蚀刻工艺完成之后保留的任何残留掩模层。 使用多层掩模结构,其包括由无机掩模材料的图案化层或由图案化的高温可成像有机掩蔽材料层覆盖的高温有机基掩蔽材料层。 无机掩模材料用于将图案转印到高温有机基掩蔽材料上,然后除去。 高温有机基掩蔽材料用于转移图案,然后如果需要可以去除。 这种方法在铝的图案蚀刻中也是有用的,即使在较低温度下可以蚀刻铝。 本发明的第二个实施方案涉及可用于图案化有机聚合物层如低k电介质或其它有机聚合物界面层的专用蚀刻化学物质。 该蚀刻化学物质可用于在导电层的蚀刻过程中的掩模开口,或者可用于蚀刻镶嵌结构,其中金属填充层施加在图案化有机基介质层的表面上。 蚀刻化学提供了使氧化物,氟,氯和溴含量最小化的蚀刻剂等离子体物质的使用。

    Method of etching patterned layers useful as masking during subsequent
etching or for damascene structures
    2.
    发明授权
    Method of etching patterned layers useful as masking during subsequent etching or for damascene structures 失效
    在随后的蚀刻或镶嵌结构期间蚀刻用作掩模的图案化层的方法

    公开(公告)号:US6080529A

    公开(公告)日:2000-06-27

    申请号:US174763

    申请日:1998-10-19

    摘要: A first embodiment of the present invention pertains to a method of patterning a semiconductor device conductive feature while permitting easy removal of any residual masking layer which remains after completion of the etching process. A multi-layered masking structure is used which includes a layer of high-temperature organic-based masking material overlaid by either a patterned layer of inorganic masking material or by a layer of patterned high-temperature imageable organic masking material. The inorganic masking material is used to transfer a pattern to the high-temperature organic-based masking material and is then removed. The high-temperature organic-based masking material is used to transfer the pattern and then may be removed if desired. This method is also useful in the pattern etching of aluminum, even though aluminum can be etched at lower temperatures. A second embodiment of the present invention pertains to a specialized etch chemistry useful in the patterning of organic polymeric layers such as low k dielectrics, or other organic polymeric interfacial layers. This etch chemistry is useful for mask opening during the etch of a conductive layer or is useful in etching damascene structures where a metal fill layer is applied over the surface of a patterned organic-based dielectric layer. The etch chemistry provides for the use of etchant plasma species which minimize oxygen, fluorine, chlorine, and bromine content.

    摘要翻译: 本发明的第一实施例涉及一种图案化半导体器件导电特征的方法,同时允许容易地去除在蚀刻工艺完成之后保留的任何残留掩模层。 使用多层掩模结构,其包括由无机掩模材料的图案化层或由图案化的高温可成像有机掩蔽材料层覆盖的高温有机基掩蔽材料层。 无机掩模材料用于将图案转印到高温有机基掩蔽材料上,然后除去。 高温有机基掩蔽材料用于转移图案,然后如果需要可以去除。 这种方法在铝的图案蚀刻中也是有用的,即使在较低温度下可以蚀刻铝。 本发明的第二个实施方案涉及可用于图案化有机聚合物层如低k电介质或其它有机聚合物界面层的专用蚀刻化学物质。 该蚀刻化学物质可用于在导电层的蚀刻过程中的掩模开口,或者可用于蚀刻镶嵌结构,其中金属填充层施加在图案化有机基介质层的表面上。 蚀刻化学提供了使氧化物,氟,氯和溴含量最小化的蚀刻剂等离子体物质的使用。

    Method for high temperature etching of patterned layers using an organic
mask stack
    3.
    发明授权
    Method for high temperature etching of patterned layers using an organic mask stack 失效
    使用有机掩模叠层对图案化层进行高温蚀刻的方法

    公开(公告)号:US6143476A

    公开(公告)日:2000-11-07

    申请号:US991219

    申请日:1997-12-12

    摘要: The present disclosure pertains to a method of patterning a semiconductor device feature which provides for the easy removal of any residual masking layer which remains after completion of a pattern etching process. The method provides for a multi-layered masking structure which includes a layer of high-temperature organic-based masking material overlaid by either a layer of a high-temperature inorganic masking material which can be patterned to provide an inorganic hard mask, or by a layer of high-temperature imageable organic masking material which can be patterned to provide an organic hard mask. The hard masking material is used to transfer a pattern to the high-temperature organic-based masking material, and then the hard masking material is removed. The high-temperature organic-based masking material is used to transfer the pattern to an underlying semiconductor device feature.

    摘要翻译: 本公开涉及一种图案化半导体器件特征的方法,其提供容易去除在图案蚀刻工艺完成之后保留的任何残留掩模层。 该方法提供了一种多层掩模结构,其包括由可以被图案化以提供无机硬掩模的高温无机掩蔽材料层覆盖的高温有机基掩蔽材料层,或由 可以图案化以提供有机硬掩模的高温可成像有机掩模材料层。 使用硬掩模材料将图案转印到高温有机基掩蔽材料上,然后去除硬掩模材料。 高温有机基掩蔽材料用于将图案转移到下面的半导体器件特征。

    Method of etching dielectric layers using a removable hardmask
    4.
    发明授权
    Method of etching dielectric layers using a removable hardmask 失效
    使用可拆卸硬掩模蚀刻介电层的方法

    公开(公告)号:US06458516B1

    公开(公告)日:2002-10-01

    申请号:US09551255

    申请日:2000-04-18

    IPC分类号: G03C556

    摘要: A method of patterning a layer of dielectric material having a thickness greater than 1,000 Å, and typically a thickness greater than 5,000 Å. The method is particularly useful for forming a high aspect ratio via or a high aspect ratio contact including self-aligned contact structures, where the aspect ratio is typically greater than 3 and the feature size of the contact is about 0.25 &mgr;m or less. In particular, an organic, polymeric-based masking material is used in a plasma etch process for transferring a desired pattern through an underlying layer of dielectric material. The combination of masking material and plasma source gas must provide the necessary high selectivity toward etching of the underlying layer of dielectric material. The selectivity is preferably greater than 3:1, where the etch rate of the dielectric material is at least 3 times greater than the etch rate of the organic, polymeric-based masking material. The dielectric material may be inorganic, for example, silicon oxide; doped silicon oxide; carbon-containing silicon oxide; SOG; BPSG; and similar materials. The dielectric material may be also be organic, where a high temperature organic-based masking material is used for transferring a desired pattern, and the underlying dielectric material is of a chemical and structural composition which is sufficiently different from the masking material that the required selectivity is provided. In any case, the organic, polymeric-based masking material is easily removed from the substrate etch process after completion of etch without damage to underlying device structures.

    摘要翻译: 图案化厚度大于1000,通常大于5,000的厚度的电介质材料层的方法。 该方法对于形成包括自对准接触结构的高纵横比通孔或高纵横比接触特别有用,其中纵横比通常大于3,接触的特征尺寸为约0.25μm或更小。 特别地,在等离子体蚀刻工艺中使用有机的基于聚合物的掩模材料,用于将期望的图案转移通过介电材料的下层。 掩模材料和等离子体源气体的组合必须为蚀刻介电材料的下层提供必要的高选择性。 选择性优选大于3:1,其中介电材料的蚀刻速率比有机聚合物基掩模材料的蚀刻速率高至少3倍。 介电材料可以是无机的,例如氧化硅; 掺杂氧化硅; 含碳氧化硅; SOG; BPSG; 和类似的材料。 介电材料也可以是有机的,其中使用高温有机基掩蔽材料来转移所需的图案,并且下面的介电材料具有与掩蔽材料充分不同的化学和结构组成,所需的选择性 被提供。 在任何情况下,有机的基于聚合物的掩蔽材料在蚀刻完成之后容易地从基底蚀刻工艺中去除而不损坏下面的器件结构

    Method and apparatus for asymmetric gas distribution in a semiconductor wafer processing system
    5.
    发明授权
    Method and apparatus for asymmetric gas distribution in a semiconductor wafer processing system 失效
    半导体晶片处理系统中不对称气体分布的方法和装置

    公开(公告)号:US06620289B1

    公开(公告)日:2003-09-16

    申请号:US09300563

    申请日:1999-04-27

    IPC分类号: H01L21306

    摘要: A method and apparatus for processing a workpiece in a chamber by providing an asymmetric flow of process gas and processing the workpiece with the process gas. The asymmetric flow counteracts a non-uniform distribution of reactive species in the chamber. The asymmetric flow can be accomplished by introducing the process gas through a plurality of gas nozzles that communicate through a side wall of the chamber proximate a pump port while pumping gas with a pump coupled to the pump port. The inventive method can be used with a conventional processing chamber by only opening the gas nozzles closest to the pump and blocking any other gas nozzles. Alternatively, the method can be implemented in a processing chamber having gas nozzles located only proximate the pump port.

    摘要翻译: 一种用于通过提供工艺气体的非对称流动并用工艺气体处理工件来处理腔室中的工件的方法和装置。 不对称流动抵消了室中反应物质的不均匀分布。 不对称流动可以通过将工艺气体引入多个气体喷嘴来实现,所述多个气体喷嘴通过邻近泵口的腔室的侧壁连通,同时用连接到泵口的泵泵送气体。 本发明的方法可以通过仅打开最靠近泵的气体喷嘴并阻挡任何其它气体喷嘴而与常规处理室一起使用。 或者,该方法可以在具有仅位于泵端口附近的气体喷嘴的处理室中实现。

    Control of patterned etching in semiconductor features

    公开(公告)号:US06534416B1

    公开(公告)日:2003-03-18

    申请号:US09637509

    申请日:2000-08-11

    IPC分类号: H01L21302

    摘要: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. To avoid the trapping of reactive species interior of the etched copper surface, hydrogen is applied to that surface. Hydrogen is adsorbed on the copper exterior surface and may be absorbed into the exterior surface of the copper, so that it is available to react with species which would otherwise penetrate that exterior surface and react with the copper interior to that surface. Sufficient hydrogen must be applied to the exterior surface of the etched portion of the copper feature to prevent incident reactive species present due to etching of adjacent feature surfaces from penetrating the previously etched feature exterior surface. The most preferred embodiment of the invention provides for the use of hydrogen chloride (HCl) and/or hydrogen bromide (HBr) as the sole or principal source of the reactive species used in etching copper. Dissociation of the HCl and/or HBr provides the large amounts of hydrogen necessary to protect the copper feature etched surfaces from penetration by reactive species adjacent the etched surface. Additional hydrogen gas may be added to the plasma feed gas which comprises the HCl and/or HBr when the reactive species density in the etch process chamber is particularly high. Although the HCl or HBr may be used as an additive in combination with other plasma feed gases, preferably HCl or HBr or a combination thereof accounts for at least 40%, and more preferably at least 50%, of the reactive species generated by the plasma. Most preferably, HCl or HBr should account for at least 80% of the reactive species generated by the plasma.

    Method of heating a semiconductor substrate

    公开(公告)号:US06547978B2

    公开(公告)日:2003-04-15

    申请号:US10017001

    申请日:2001-12-13

    IPC分类号: B44C0122

    摘要: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. This is particularly important for feature sizes less than about 0.5 &mgr;m, where presence of even a limited amount of a corrosive agent can eat away a large portion of the feature. The copper feature integrity is protected by several different mechanisms: 1) The reactive etchant species are designed to be only moderately aggressive, so that an acceptable etch rate is achieved without loss of control over the feature profile or the etch surface; 2) Hydrogen is applied over the etch surface so that it is absorbed onto the etch surface, where it acts as a boundary which must be crossed by the reactive species and a chemical modulator for the reactive species; and 3) Process variables are adjusted so that byproducts from the etch reaction are rendered more volatile and easily removable from the etch surface. In an inductively coupled plasma etch chamber, we have observed that the preferred chlorine reactive species are generated when the chlorine is dissociated from compounds rather than furnished as Cl2 gas.

    Copper etch using HCl and HBR chemistry
    8.
    发明授权
    Copper etch using HCl and HBR chemistry 失效
    铜蚀刻使用HCl和HBR化学

    公开(公告)号:US06489247B1

    公开(公告)日:2002-12-03

    申请号:US09393446

    申请日:1999-09-08

    IPC分类号: H01L21302

    摘要: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. To avoid the trapping of reactive species interior of the etched copper surface, hydrogen is applied to that surface. Hydrogen is adsorbed on the copper exterior surface and may be absorbed into the exterior surface of the copper, so that it is available to react with species which would otherwise penetrate that exterior surface and react with the copper interior to that surface. Sufficient hydrogen must be applied to the exterior surface of the etched portion of the copper feature to prevent incident reactive species present due to etching of adjacent feature surfaces from penetrating the previously etched feature exterior surface. The most preferred embodiment of the invention provides for the use of hydrogen chloride (HCl) and/or hydrogen bromide (HBr) as the sole or principal source of the reactive species used in etching copper. Dissociation of the HCl and/or HBr provides the large amounts of hydrogen necessary to protect the copper feature etched surfaces from penetration by reactive species adjacent the etched surface. Additional hydrogen gas may be added to the plasma feed gas which comprises the HCl and/or HBr when the reactive species density in the etch process chamber is particularly high. Although the HCl or HBr may be used as an additive in combination with other plasma feed gases, preferably HCl or HBr or a combination thereof accounts for at least 40%, and more preferably at least 50%, of the reactive species generated by the plasma. Most preferably, HCl or HBr should account for at least 80% of the reactive species generated by the plasma.

    摘要翻译: 铜可以以可接受的速率提供期望的特征尺寸和完整性并且具有相对于相邻材料的选择性的方式进行图案蚀刻。 为了提供特征完整性,已经蚀刻到所需尺寸和形状的铜特征表面的部分在蚀刻相邻特征表面期间必须被保护。 为了避免被蚀刻的铜表面内部的活性物质的捕获,将氢施加到该表面。 氢吸附在铜外表面上,并可能被吸收到铜的外表面,使其可以与否则会渗入该外表面的物质反应并与铜表面反应。 必须向铜特征的蚀刻部分的外表面施加足够的氢以防止由于相邻特征表面的蚀刻而渗透先前蚀刻的特征外表面而存在的入射反应物种。 本发明最优选的实施方案提供了使用氯化氢(HCl)和/或溴化氢(HBr)作为用于蚀刻铜的反应物质的唯一或主要来源。 HCl和/或HBr的离解提供了保护铜特征蚀刻表面免受邻近蚀刻表面的反应性物质渗透所需的大量氢。 当蚀刻处理室中的反应物种密度特别高时,可以向包括HCl和/或HBr的等离子体进料气体中加入另外的氢气。 尽管HCl或HBr可以与其他等离子体原料气体组合使用,但优选HCl或HBr或其组合占等离子体产生的反应性物质的至少40%,更优选至少50% 。 最优选地,HCl或HBr应占等离子体产生的反应性物质的至少80%。

    Method for etching low k dielectrics
    9.
    发明授权
    Method for etching low k dielectrics 失效
    蚀刻低k电介质的方法

    公开(公告)号:US06547977B1

    公开(公告)日:2003-04-15

    申请号:US09610915

    申请日:2000-07-05

    IPC分类号: C03C1500

    CPC分类号: H01L21/31138

    摘要: The present disclosure pertains to a method for plasma etching of low k materials, particularly polymeric-based low k materials. Preferably the polymeric-based materials are organic-based materials. The method employs an etchant plasma where the major etchant species are generated from a halogen other than fluorine and oxygen. The preferred halogen is chlorine. The volumetric (flow rate) ratio of the halogen:oxygen in the plasma source gas ranges from about 1:20 to about 20:1. The atomic ratio of the halogen:oxygen preferably falls within the range from about 1:20 to about 20:1. When the halogen is chlorine, the preferred atomic ratio of chlorine:oxygen ranges from about 1:10 to about 5:1. When this atomic ratio of chlorine:oxygen is used, the etch selectivity for the low k material over adjacent oxygen-comprising or nitrogen-comprising layers is advantageous, typically in excess of about 10:1. The plasma source gas may contain additives in an amount of 15% or less by volume which are designed to improve selectivity for the low k dielectric over an adjacent material, to provide a better etch profile, or to provide better critical dimension control, for example. When the additive contains fluorine, the amount of the additive is such that residual chlorine on the etched surface of the low k material comprises less than 5 atomic %.

    摘要翻译: 本公开涉及用于等离子体蚀刻低k材料,特别是基于聚合物的低k材料的方法。 优选地,基于聚合物的材料是有机基材料。 该方法采用蚀刻剂等离子体,其中主要蚀刻剂物质由除氟和氧之外的卤素产生。 优选的卤素是氯。 等离子体源气体中的卤素:氧的体积(流速)比为约1:20至约20:1。 卤素:氧的原子比优选在约1:20至约20:1的范围内。 当卤素为氯时,氯:氧的优选原子比范围为约1:10至约5:1。 当使用氯原子的氧原子比时,低k材料在相邻的含氧或含氮层上的蚀刻选择性是有利的,通常超过约10:1。 等离子体源气体可以含有体积的15%或更少的添加剂,其被设计成提高相邻材料上的低k电介质的选择性,以提供更好的蚀刻轮廓,或提供更好的临界尺寸控制,例如 。 当添加剂含氟时,添加剂的量使得低k材料的蚀刻表面上的残留氯含量小于5原子%。

    Copper etch using HCI and HBr chemistry
    10.
    发明授权
    Copper etch using HCI and HBr chemistry 失效
    铜蚀刻使用HCI和HBr化学

    公开(公告)号:US6008140A

    公开(公告)日:1999-12-28

    申请号:US911878

    申请日:1997-08-13

    摘要: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. To avoid the trapping of reactive species interior of the etched copper surface, hydrogen is applied to that surface. Hydrogen is adsorbed on the copper exterior surface and may be absorbed into the exterior surface of the copper, so that it is available to react with species which would otherwise penetrate that exterior surface and react with the copper interior to that surface. Sufficient hydrogen must be applied to the exterior surface of the etched portion of the copper feature to prevent incident reactive species present due to etching of adjacent feature surfaces from penetrating the previously etched feature exterior surface. The most preferred embodiment of the invention provides for the use of hydrogen chloride (HCl) and/or hydrogen bromide (HBr) as the sole or principal source of the reactive species used in etching copper. Dissociation of the HCl and/or HBr provides the large amounts of hydrogen necessary to protect the copper feature etched surfaces from penetration by reactive species adjacent the etched surface. Additional hydrogen gas may be added to the plasma feed gas which comprises the HCl and/or HBr when the reactive species density in the etch process chamber is particularly high. Although the HCl or HBr may be used as an additive in combination with other plasma feed gases, preferably HCl or HBr or a combination thereof accounts for at least 40%, and more preferably at least 50%, of the reactive species generated by the plasma. Most preferably, HCl or HBr should account for at least 80% of the reactive species generated by the plasma.

    摘要翻译: 铜可以以可接受的速率提供期望的特征尺寸和完整性并且具有相对于相邻材料的选择性的方式进行图案蚀刻。 为了提供特征完整性,已经蚀刻到所需尺寸和形状的铜特征表面的部分在蚀刻相邻特征表面期间必须被保护。 为了避免被蚀刻的铜表面内部的活性物质的捕获,将氢施加到该表面。 氢吸附在铜外表面上,并可能被吸收到铜的外表面,使其可以与否则会渗入该外表面的物质反应并与铜表面反应。 必须向铜特征的蚀刻部分的外表面施加足够的氢以防止由于相邻特征表面的蚀刻而渗透先前蚀刻的特征外表面而存在的入射反应物种。 本发明最优选的实施方案提供了使用氯化氢(HCl)和/或溴化氢(HBr)作为用于蚀刻铜的反应物质的唯一或主要来源。 HCl和/或HBr的离解提供了保护铜特征蚀刻表面免受邻近蚀刻表面的反应性物质渗透所需的大量氢。 当蚀刻处理室中的反应物种密度特别高时,可以向包括HCl和/或HBr的等离子体进料气体中加入另外的氢气。 尽管HCl或HBr可以与其他等离子体原料气体组合使用,但优选HCl或HBr或其组合占等离子体产生的反应性物质的至少40%,更优选至少50% 。 最优选地,HCl或HBr应占等离子体产生的反应性物质的至少80%。