摘要:
There is provided a facilitated transport membrane for separating alkene hydrocarbon comprising a solid polymer electrolyte layer consisting a transition metal salt, a polymer, an ionic liquid, and a porous supported membrane. The facilitated transport membrane of the present invention shows high selectivity and permeability for the alkene hydrocarbon. It further maintains the complex's activity as a carrier during a long operation, wherein the complex is formed by an interaction of the transition metal ion with the polymer ligand within the solid polymer electrolyte.
摘要:
There is provided a nanocomposite membrane comprising an Ag-nanoparticle/polymer nanocomposite, in which the Ag-particles are uniformly dispersed in the polymer matrix, and a support membrane for supporting the nanocomposite, as well as a process of preparing said membrane. The nanocomposite membrane of the present invention comprising a neutral Ag-nanoparticle as an olefin carrier, which is chemically stable, has excellent long-term operation performance characteristics as well as high selectivity and permeability. Thus, it can be advantageously used for the separation of olefin from an olefin/paraffin mixture.
摘要:
A method for producing nanoparticle/block copolymer composites is provided. The method includes mixing nanoparticles having an organic ligand L and a block copolymer A-b-B having block repeating units A and B with different solubility parameters in a solvent S to form micelles by self-assembly. The solubility parameters of the organic ligand L, the block repeating units A and B of the block copolymer A-b-B and the solvent S satisfy the following inequalities: 29≦δS−δA (1) δS−δB≦29 (2) |δL−δA|≦5 or |δL−δB|≦5 (3) in which δS, δA, δB and δL represent the solubility parameters of the solvent S, the block repeating unit A, the block repeating unit B and the ligand L, respectively. According to the method, the inherent electrical, magnetic, optical, chemical and mechanical properties of the nanoparticles can be maintained or improved without the need to modify the surface of the nanoparticles.
摘要:
The present invention relates to an ultra-low dielectric film for a copper interconnect, in particular, to an porous film prepared in such a manner that coating with an organic solution containing a polyalkyl silsesquioxane precursor or its copolymer as a matrix and acetylcyclodextrin nanoparticles as a template and then performing a sol-gel reaction and heat treatment at higher temperature. The present films may contain the template of up to 60 vol %, due to the use of acetylcyclodextrin, and have homogeneously distributed pores with the size of no more than 5 nm in the matrix. In addition, the present films exhibit a relatively low dielectric constant of about 1.5, and excellent interconnectivity between pores, so that they are considered a promising ultra-low dielectric film for a copper interconnect.
摘要:
A method for producing nanoparticle/block copolymer composites is provided. The method includes mixing nanoparticles having an organic ligand L and a block copolymer A-b-B having block repeating units A and B with different solubility parameters in a solvent S to form micelles by self-assembly. The solubility parameters of the organic ligand L, the block repeating units A and B of the block copolymer A-b-B and the solvent S satisfy the following inequalities: 29≦δS−δA (1) δS−δB≦29 (2) |δL−δA|≦5 or |δL−δB|≦5 (3) in which δS, δA, δB and δL represent the solubility parameters of the solvent S, the block repeating unit A, the block repeating unit B and the ligand L, respectively. According to the method, the inherent electrical, magnetic, optical, chemical and mechanical properties of the nanoparticles can be maintained or improved without the need to modify the surface of the nanoparticles.
摘要:
A light emitting device comprising a photonic crystal structure having a crystal structure in which nanospheres are densely arranged in a 3D manner, wherein the nanospheres have phosphors excited by an excitation source to emit light of a wavelength longer than a pump photon of the excitation source, wherein the photonic crystal structure has at least a photonic bandgap (PBG) along a specific crystal orientation, and wherein the wavelength of the pump photon overlaps a photonic bandedge region.
摘要:
Methods for producing nanoparticle thin films are disclosed. According to one of the methods, a nanoparticle thin film is produced by modifying the surface of nanoparticles to allow the nanoparticles to be charged, controlling an electrostatic attractive force between the charged nanoparticles and a substrate and a repulsive force between the individual nanoparticles by a variation in pH to control the number density of the nanoparticles arranged on the substrate.
摘要:
The present invention relates to a quantum dot light emitting element which can form a quantum light emitting layer configured of charge transporting particles and quantum dots and a charge transporting layer in a solution process, to reduce process expense, and a method for manufacturing the same. The quantum dot light emitting element includes a substrate, an anode formed on the substrate, a quantum light emitting layer formed on the anode, the quantum light emitting layer having charge transporting particles and quantum dots mixed therein, and a cathode formed on the quantum light emitting layer.
摘要:
The present invention relates to a quantum dot light emitting element which can form a quantum light emitting layer configured of charge transporting particles and quantum dots and a charge transporting layer in a solution process, to reduce process expense, and a method for manufacturing the same. The quantum dot light emitting element includes a substrate, an anode formed on the substrate, a quantum light emitting layer formed on the anode, the quantum light emitting layer having charge transporting particles and quantum dots mixed therein, and a cathode formed on the quantum light emitting layer.
摘要:
The present invention provides norbornene-based copolymers for which one monomer is at least selected from a group consisting of norbornene and dicyclopentadiene, and the other from norbornene-based comonomers of Formula 1 shown below: In Formula 1, R1, R2 and a are defined in this specification.The present invention provides insulating elements for multi-chip packages and antireflection films for the exposure process of semiconductor fabrication using said norbornene-based copolymers. Norbornene-based copolymers according to the present invention have low dielectric constant as well as high thermal stability and excellent solubility to various organic solvents.