摘要:
A silicon substrate comprises, at least two surfaces extending substantially along respective crystal faces of (111) crystal orientation of the silicon, the crystal faces of (111) crystal orientation crossing with each other, an electrically insulating layer formed by oxidizing the silicon substrate from the surfaces, and an electrically conductive portion insulated electrically by the electrically insulating layer from an outside of the silicon substrate.
摘要:
A silicon substrate comprises at least two surfaces extending substantially along respective crystal faces of (111) crystal orientation of the silicon, the crystal faces of (111) crystal orientation crossing with each other, an electrically insulating layer formed by oxidizing the silicon substrate from the surfaces, and an electrically conductive portion insulated electrically by the electrically insulating layer from an outside of the silicon substrate.
摘要:
A quantum wire is formed at the top of triangular protrusion of silicon substrate. A quantum wire is isolated from the substrate by silicon oxide layers. A quantum wire is isolated from the substrate by impurity layers of a conduction type different from that of the substrate. An insulator film and a gate electrode are formed at the edge of triangular protrusion of a silicon substrate, and a quantum wire is induced by applying a voltage to the gate electrode. A quantum wire structure is fabricated by forming saw-tooth-like protrusions having (111) side planes by performing anisotropic crystalline etching and by oxidizing the silicon substrate with use of the oxide protection film to remain only around the top of the protrusions unoxidized. In another method, an oxide film is formed except around the top of the protrusions whereby a quantum wire is formed at the unoxidized region. In a different method, impurity layers are formed except around the top of the protrusions by ion implantation.
摘要:
The method of fabricating a quantum device of the invention includes the steps of: forming a quantum dot having side faces on a first insulating layer; forming a second insulating layer which can function as a tunnel film, on at least the side faces of the quantum dot; depositing a non-crystal semiconductor layer on the first insulating layer so as to cover the quantum dot; removing at least a portion of the non-crystal semiconductor layer which is positioned above the quantum dot; single-crystallizing a predetermined portion of the non-crystal semiconductor layer which is in contact with the second insulating layer; and forming a quantum wire which includes the single-crystallized semiconductor portion and the quantum dot, on the first insulating layer.
摘要:
A resonant electron transfer device includes a plurality of units each of which has of at least one one-dimensional quantum wire having a quantum well elongated in a direction, a zero-dimensional quantum dot having a base quantization level higher than that of the one-dimensional quantum wire an electrode for controlling respective internal levels of the quantum wire and dot wherein the quantum wire and dot forming one unit is connected via a potential barrier capable of exhibiting a tunnel effect therebetween.
摘要:
A solid-state imaging apparatus has an imaging unit which is partly shielded against incident light to produce an optically shielded signal. A memory unit is provided for storing the optically shielded signal as a dark state signal during one horizontal scanning period. A line defect signal representative of a line defect present in the imaging unit is stored in the memory unit during the one horizontal scanning period. An optical signal of the imaging unit and a dark state signal stored in the memory unit during the one horizontal scanning period are subtracted so that the line defect signal contained in the optical signal of the imaging unit and the dark state signal are cancelled out to produce a signal having no line defect.
摘要:
A charge transfer device comprising a semiconductor body including a first conductivity type region and a second conductivity region which defines a charge transfer channel below a major surface of the semiconductor body. An insulative layer is provided on the major surface. A plurality of electrodes is attached to the insulative layer to produce potential wells in response to application of different potentials thereto with respect to a common electrode attached to the opposite surface of the semiconductor body. The n-type conductivity charge transfer channel includes a center section of lower impurity concentration and a peripheral section of higher impurity concentration which substantially eliminates the undesirable lateral field effect which would otherwise occur in an area adjacent to the boundary with the first conductivity region.
摘要:
In a solid-state image pickup device of the type in which a photosensitive or photoconductive film is formed over a substrate capable of charge-transfer or X-Y address scanning and an electrode is formed over the photosensitive or photoconductive film, a means for applying to the electrode a voltage having an amplitude proportional to the amount of incident light, whereby blooming may be minimized and an automatic aperture control function may be attained. Because the voltage applied to the electrode over the photosensitive or photoconductive film is set so that the sensitivity of the photoconductive film may be decreased when a light image of high intensity falls on the device, blooming may be avoided.
摘要:
A method of obtaining a multilayer semiconductor device by forming a semiconductor crystallized layer through an insulative material over a semiconductor substrate in which a semiconductor device is formed. The insulative material is formed on the semiconductor substrate in which the semiconductor device is fabricated and a first semiconductor layer is formed on the insulative material. Thereafter, the surface of the first semiconductor layer is planarized and an insulative material is formed on this planarized surface, then a second semiconductor layer is formed on this insulative material. Next, the second semiconductor layer is crystallized by the irradiation of an energy beam, thereby fabricating a device in the second crystallized semiconductor layer.
摘要:
A solid-state image sensor is provided, which has a high spectral response over the whole visible light range and wherein a photoconductor layer having a hetero-junction defined by a hole blocking layer and a layer consisting of a system (Zn.sub.1-x Cd.sub.x Te).sub.1-y (In.sub.2 Te.sub.3).sub.y is formed over a semiconductor substrate which has charge transfer type unit cells or X-Y switching matrix type unit cells.