摘要:
A memory device is proposed which enables to guarantee the operation of MRAM elements being magnetically shielded against a large external magnetic fields without being affected by an internal leakage magnetic field. The MRAM elements 30 which are shielded by magnetic shield layers 33, 34 are placed at an intermediate region 41 avoiding an edge region 43 and a center region 42 of the magnetic shield layers 33, 34 so that the MRAM element is secured to operate normally without being affected by the internal leakage magnetic field avoiding the edge region 43 where the magnetic shield effect is reduced by the exterior magnetic field, and avoiding the central region 42 where the internal leakage magnetic field is large
摘要:
A memory device is proposed which enables to guarantee the operation of MRAM elements being magnetically shielded against a large external magnetic fields without being affected by an internal leakage magnetic field. The MRAM elements 30 which are shielded by magnetic shield layers 33, 34 are placed at an intermediate region 41 avoiding an edge region 43 and a center region 42 of the magnetic shield layers 33, 34 so that the MRAM element is secured to operate normally without being affected by the internal leakage magnetic field avoiding the edge region 43 where the magnetic shield effect is reduced by the exterior magnetic field, and avoiding the central region 42 where the internal leakage magnetic field is large.
摘要:
A magnetic memory device in which an MRAM element is magnetically shielded from a large external magnetic field in an satisfactory manner, making it possible to surely achieve an operation free of problems in a magnetic field generated by the environment in which the MRAM element is used. A magnetic random access memory (MRAM) (30) is constituted by a TMR element (10) having a magnetized pinned layer (4), (6) with fixed direction of magnetization and a magnetic layer (memory layer) (2) with changeable direction of magnetization stacked on one another, mounted on a substrate together with another element (38), such as a DRAM, wherein a magnetic shielding layer (33), (34) is formed in a region corresponding to an area occupied by the MRAM element (30) or/and a magnetic shielding layer (33), (34) is with a distance of 15 mm or less between the opposite sides (especially, a length or a width).
摘要:
A magnetic memory device in which an MRAM element is magnetically shielded from large external magnetic fields. The magnetic memory device includes: a substrate; a magnetic random access memory mounted on the substrate, the magnetic random access memory including a memory element having a magnetized pinned layer with fixed direction of magnetization and a magnetic layer with changeable direction of magnetization stacked on one another; another element mounted on the substrate; and a pair of magnetic shielding layers which magnetically shield the memory element, the magnetic shielding layers located relatively above and below the memory element and within a region corresponding to an area occupied by the memory element.
摘要:
An electromagnetism suppressing material has an increased electromagnetism suppressing effect, can be flexibly formed in various shapes, and is inexpensive. An electromagnetism suppressing device uses the electromagnetism suppressing material, and an electronic appliance uses the electromagnetism suppressing material or the electromagnetism suppressing device. The electromagnetism suppressing material is a liquid material and/or gel material with electrical polarity.
摘要:
An electromagnetism suppressing material has an increased electromagnetism suppressing effect, can be flexibly formed in various shapes, and is inexpensive. An electromagnetism suppressing device uses the electromagnetism suppressing material, and an electronic appliance uses the electromagnetism suppressing material or the electromagnetism suppressing device. The electromagnetism suppressing material is a liquid material and/or gel material with electrical polarity.
摘要:
A method for producing a magnetic particle forming a magnetic material for absorbing electromagnetic waves comprises the steps of mixing an organometallic complex or a metal salt with a chain polymer and dissolving the mixture in a solvent (step S1); raising the temperature of the mixture to reaction temperature (step S2), carrying out a reaction at the reaction temperature (step S3); and forming the magnetic particle having a structure that the periphery of each fine particle formed from the organometallic complex or the metal salt is surrounded by the chain polymer and recovering the formed magnetic particle after the reaction (step S4). The magnetic particle has a nanogranular structure to become a magnetic material for absorbing electromagnetic waves. Such a magnetic particle is produced by a wet reaction. Thus, a larger amount of magnetic particle can be produced by one reaction.
摘要:
A method for producing a magnetic particle forming a magnetic material for absorbing electromagnetic waves comprises the steps of mixing an organometallic complex or a metal salt with a chain polymer and dissolving the mixture in a solvent (step S1); raising the temperature of the mixture to reaction temperature (step S2), carrying out a reaction at the reaction temperature (step S3); and forming the magnetic particle having a structure that the periphery of each fine particle formed from the organometallic complex or the metal salt is surrounded by the chain polymer and recovering the formed magnetic particle after the reaction (step S4). The magnetic particle has a nanogranular structure to become a magnetic material for absorbing electromagnetic waves. Such a magnetic particle is produced by a wet reaction. Thus, a larger amount of magnetic particle can be produced by one reaction.
摘要:
A method for producing a magnetic particle forming a magnetic material for absorbing electromagnetic waves comprises the steps of mixing an organometallic complex or a metal salt with a chain polymer and dissolving the mixture in a solvent (step S1); raising the temperature of the mixture to reaction temperature (step S2), carrying out a reaction at the reaction temperature (step S3); and forming the magnetic particle having a structure that the periphery of each fine particle formed from the organometallic complex or the metal salt is surrounded by the chain polymer and recovering the formed magnetic particle after the reaction (step S4). The magnetic particle has a nanogranular structure to become a magnetic material for absorbing electromagnetic waves. Such a magnetic particle is produced by a wet reaction. Thus, a larger amount of magnetic particle can be produced by one reaction.
摘要:
It is an object of the invention to relax magnetic saturation and realize a high-performance magnetic shield effect that is suitable for magnetic devices such as an MRAM. A magnetic shield member of the invention is suitable for a magnetic memory device in which a magnetic random access memory (MRAM) consisting of a TMR element formed by stacking a magnetization fixed layer with a direction of magnetization fixed and a magnetic layer, in which a direction of magnetization can be changed, via a tunnel barrier layer is sealed by a sealing material such as resin. A planar shape or a sectional shape of magnetic shield plates provided on the sealing material in order to magnetically shield the MRAM is a shape in which a side substantially perpendicular to a direction of an outer magnetic field and a side substantially parallel to the direction of an outer magnetic field are not orthogonal to each other, in particular, circular, polygonal, or the like, whereby it is possible to relax magnetic saturation of the magnetic shield plate and keep the magnetic shield effect.