摘要:
A method of fabricating a heatsink including a substrate of a sintered compact containing Cu and W, and a thin diamond film layer formed on the surface of the substrate with good adherence, involves immersing the substrate in acid to reduce the Cu content of a surface region thereof and to roughen exposed W at that surface region, and then forming the thin diamond film layer on that surface region by vapor synthesis. Alternatively, a thin diamond film layer is formed on a surface of a porous body substrate, and then a hole in the porous body substrate is filled with Cu.
摘要:
A thin diamond film layer is formed on a substrate with good adherence. A heatsink includes a substrate of a sintered compact including Cu and W, and a thin diamond film layer formed on the surface of the substrate. The Cu content in the substrate is at least 5% by weight. In an X-ray diffraction chart obtained by irradiating the thin diamond film layer with an X-ray, the diffraction peak intensity of the (110) plane of W is at least 100 times the diffraction peak intensity of the (200) plane of Cu.
摘要:
A low-cost package for semiconductors that is superior in heat dissipation and capable of preventing the cracking of semiconductor elements at the time of mounting, and a semiconductor module employing the package. The package for semiconductors comprises a CVD diamond substrate 22 made of an independent diamond lamina, and a highly heat-conductive metallic member 21 bonded with the substrate. Semiconductor elements such as MMICs are mounted on an area 25 for mounting semiconductor elements. The CVD diamond substrate 22 may be replaced by a composite in which a CVD diamond layer is formed on a base material having thermal conductivity of 100 W/m·K or more. The provision of protuberances 26 of the metallic member 21 around the CVD diamond substrate 22 prevents the leakage of microwaves and millimeter waves.
摘要:
An electron-emitting element comprises a diamond substrate, and a diamond protrusion grown on a surface of the diamond substrate so as to have a pointed portion in a form capable of emitting an electron. Since the diamond protrusion formed by growth has a sharply pointed tip portion, it can fully emit electrons. Preferably, the surface of the diamond substrate is a {100} face, and the diamond protrusion is surrounded by {111} faces.
摘要:
An electron-emitting element comprises a diamond substrate, and a diamond protrusion grown on a surface of the diamond substrate so as to have a pointed portion in a form capable of emitting an electron. Since the diamond protrusion formed by growth has a sharply pointed tip portion, it can fully emit electrons. Preferably, the surface of the diamond substrate is a {100} face, and the diamond protrusion is surrounded by {111} faces.
摘要:
An initial single-crystalline diamond base material is prepared from a flat plate having a major surface and side surfaces consisting of low-index planes. Then, single crystalline diamond is homoepitaxially vapor-deposited on the single-crystalline diamond base material, and a resulting diamond material is cut and polished in a particular manner to provide a successive base material on which single-crystalline diamond is again grown, thereby forming a single-crystalline diamond having a large area. A holder for the single-crystalline diamond base material consists of or is coated with a material hardly forming a compound with carbon. Single crystalline diamond can be stably formed on the surfaces of the base material. Consequently, single-crystalline diamond of high quality having a large area can be stably produced in a shorter time using either plasma CVD or a thermal filament method.
摘要:
A diamond electron source in which a single sharpened tip is formed at one end of a pillar-shaped diamond monocrystal of a size for which resist application is difficult in a microfabrication process, as an electron emission point used in an electron microscope or other electron beam device, and a method for manufacturing the diamond electron source. One end of a pillar-shaped diamond monocrystal 10 is ground to form a smooth flat surface 11, and a ceramic layer 12 is formed on the smooth flat surface 11. A thin-film layer 14 having a prescribed shape is deposited on the ceramic layer 12 using a focused ion beam device, after which the ceramic layer 12 is patterned by etching using the thin-film layer 14 as a mask. A single sharpened tip is formed at one end of the pillar-shaped diamond monocrystal 10 by dry etching using the resultant ceramic mask.
摘要:
A method for manufacturing a diamond single crystal substrate, in which a single crystal is grown from a diamond single crystal serving as a seed substrate by vapor phase synthesis, said method comprising: preparing a diamond single crystal seed substrate which has a main surface whose planar orientation falls within an inclination range of not more than 8 degrees relative to a {100} plane or a {111} plane, as a seed substrate; forming a plurality of planes of different orientation which are inclined in the outer peripheral direction of the main surface relative to the main surface on one side of this seed substrate, by machining; and then growing a diamond single crystal by vapor phase synthesis.
摘要:
A diamond single crystal substrate manufacturing method for growing by vapor-phase synthesis a single crystal from a diamond single crystal seed substrate, comprising etching away by reactive ion etching, prior to single crystal growth, at least 0.5 μm and less than 400 μm, in etching thickness off the surface of the seed substrate which has been mechanically polished, thereby removing from the surface of the seed substrate the work-affected layers caused by mechanical polishing; and growing then a single crystal thereon. The manufacturing method provides a diamond single crystal substrate having a high quality, large size, and no unintentional impurity inclusions, and suitable for use as semiconductor materials, electronic components, optical components or the like.
摘要:
A diamond single crystal composite substrate which are constructed from a plurality of diamond single crystal substrates with uniform plane orientations disposed side by side and integrated overall by growing diamond single crystals thereon by vapor phase synthesis, in which the deviation of the plane orientation of the main plane of each of said plurality of diamond single crystal substrates, excluding one diamond single crystal substrate, from the {100} plane is less than 1 degree, the deviation of the plane orientation of the main plane of the excluded one substrate from the {100} plane is 1 to 8 degrees, said one diamond single crystal substrate is disposed in the outermost circumferential part when the diamond single crystal substrates are disposed side by side, and is disposed so that the direction in the main plane of said one substrate faces in the outer circumferential direction of the disposed substrates, and diamond single crystals are then grown by vapor phase synthesis so that the diamond single crystal grown from said one diamond single substrate is caused to cover the diamond single crystals grown on the other substrates, to achieve an overall integration.