摘要:
A method of forming a microelectronic device comprising, on a same support: at least one semi-conductor zone strained according to a first strain, and at least one semi-conductor zone strained according to a second strain, different to the first strain, comprising: the formation of semi-conductor zones above a pre-strained layer, then trenches extending through the thickness of the pre-strained layer, the dimensions and the layout of the semi-conductor zones as a function of the layout and the dimensions of the trenches being so as to obtain semi-conductor zones having a strain of the same type as that of the pre-strained layer and semi-conductor zones having a strain of a different type to that of the pre-strained layer.
摘要:
A method of forming a microelectronic device comprising, on a same support: at least one semi-conductor zone strained according to a first strain, and at least one semi-conductor zone strained according to a second strain, different to the first strain, comprising: the formation of semi-conductor zones above a pre-strained layer, then trenches extending through the thickness of the pre-strained layer, the dimensions and the layout of the semi-conductor zones as a function of the layout and the dimensions of the trenches being so as to obtain semi-conductor zones having a strain of the same type as that of the pre-strained layer and semi-conductor zones having a strain of a different type to that of the pre-strained layer.
摘要:
The invention relates to a method for forming microcavities (118) of different depths in a layer (102) based on at least an amorphous or monocrystalline material, comprising at least the following steps in which: at least one shaft and/or trench is formed in the layer (102) so as to extend through one face (101) thereof, such that two sections of the shaft and/or the trench, in two different planes parallel to the face (101), are aligned in relation to one another along an alignment axis forming a non-zero angle with a normal to the plane of said face (101); and the layer (102) is annealed in a hydrogenated atmosphere so as to transform the shaft and/or trench into at least two microcavities (118).
摘要:
A method of manufacturing at least one nanowire, the nanowire being parallel to its supporting substrate, the method comprising: the formation on the supporting substrate of a structure comprising a bar and two regions, a first end of the bar being secured to one of the two regions and a second end of the bar being secured to the other region, the width of the bar being less than the width of the regions, the subjection of the bar to an annealing under gaseous atmosphere in order to transform the bar into a nanowire, the annealing being carried out under conditions allowing control of the sizing of the neck produced during the formation of the nanowire.
摘要:
A method according to the invention enables first and second active zones to be produced on a front face of a support, which said zones are respectively formed by first and second monocrystalline semi-conducting materials that are distinct from one another and preferably have identical crystalline structures. The front faces of the first and second active zones also present the advantage of being in the same plane. Such a method consists in particular in producing the second active zones by a crystallization step of the second semi-conducting material in monocrystalline form, from patterns made of second semi-conducting material in polycrystalline and/or amorphous form and from interface regions between said patterns and preselected first active zones. Moreover, the support is formed by stacking of a substrate and of an electrically insulating thin layer, the front face of the electrically insulating thin layer forming the front face of the support.
摘要:
A method for forming a wire in a layer based on a monocrystalline or amorphous material. The method forms two trenches in the layer, crossing through one face of the layer, separated from each other by one portion of the layer, by an etching of the layer on which is arranged an etching mask, and anneals, under hydrogenated atmosphere, the layer, the etching mask being maintained on the layer during the annealing. The depths and widths of the sections of the two trenches, and the width of a section of the portion of the layer, are such that the annealing eliminates a part of the portion of the layer, the two trenches then forming a single trench in which a remaining part of the portion of the layer forms the wire.
摘要:
The invention relates to a thin film having a thickness of less than 10 nm, made of oxidizable semi-conductor material and patterned in the form of patterns. To prevent the dewetting phenomenon of said patterns, lateral oxidized zones are arranged at the periphery of each pattern of the thin film so as to form an anchoring.This anchoring can be achieved by forming an oxide layer over the whole of the thin film and then depositing a nitride layer. Then the nitride and oxide layers and the thin film are patterned and the thin film is laterally oxidized so that each pattern of the thin film comprises, at the periphery thereof, an oxidized zone of predetermined width. The nitride and oxide layers are then removed so as to release the patterns oxidized at their periphery.
摘要:
A method for insulating patterns formed in a thin film made of a first oxidizable semi-conducting material, with a thickness less than or equal to 20 nm and preferably less than or equal to 10 nm, successively comprises: formation, on the thin film, of a mask defining, in the thin film, free zones and zones covered by the mask designed to substantially form the patterns, selective formation, at the level of the free zones of the thin film, of an additional layer formed by an oxide of a second semi-conducting material, oxidization of the free zones of the thin film, removal of the mask so as to release the thin film patterned in the form of patterns insulated by oxidized zones. The first and second semi-conducting materials can be identical and the step of selective formation of the additional layer can be performed by selective epitaxial growth of the free zones of the thin film.
摘要:
The invention relates to a method for straining or deforming a pattern or a thin layer (24), starting from an initial component comprising the said thin layer and a prestressed layer (20), this method comprising: an etching step of the prestressed layer, perpendicular to its surface.
摘要:
A method for making semi-conductor nanocrystals, including at least the steps of: forming solid carbon chemical species on a semi-conductor thin layer provided on at least one dielectric layer, the dimensions and the density of the carbon chemical species formed on the semi-conductor thin layer being a function of the desired dimensions and density of the semi-conductor nanocrystals; annealing the semi-conductor thin layer, performing a dewetting of the semi-conductor and forming, on the dielectric layer, the semi-conductor nanocrystals.