摘要:
A chip type thin film capacitor is disclosed. The contact faces between inner electrodes and outer electrodes are expanded. That is, one end portion of each of first and second electrodes 220 and 240 are exposed to the outside, and the upper faces of the first and second electrodes 220 and 240 are etched so that the upper faces would be exposed to the outside. Thus first and second outer electrode connection portions 260 and 270 are formed, and terminal electrodes 280 are formed thereon. Then first and second outer electrodes 290 and 300 are formed thereupon, and a protecting layer 310 is formed by using polyimide upon a second dielectric layer 250.
摘要:
A vertical nitride semiconductor light emitting device and a manufacturing method thereof are provided. In the device, an ohmic contact layer, a p-type nitride semiconductor layer, an active layer, an n-type nitride semiconductor layer and an n-electrode are sequentially formed on a conductive substrate. At least one of a surface of the p-type nitride semiconductor layer contacting the ohmic contact layer and a surface of the n-type nitride layer contacting the n-electrode has a high resistance area of damaged nitride single crystal in a substantially central portion thereof. The high resistance area has a Schottky junction with at least one of the ohmic contact layer and the n-electrode.
摘要:
A nitride semiconductor LED improved in lighting efficiency and a fabrication method thereof, in which an n-doped semiconductor layer is formed on a substrate. An active layer is formed on the n-doped semiconductor layer to expose at least a partial area of the n-doped semiconductor layer. A p-doped semiconductor layer is formed on the active layer. A p+-doped semiconductor layer is formed on the p-doped semiconductor layer. An n+-doped semiconductor layer is formed in at least a partial upper region of the p+-doped semiconductor layer via n-dopant ion implantation. The n+-doped semiconductor layer cooperates with an underlying partial region of the p+-doped semiconductor layer to realize a reverse bias tunneling junction. Also, an upper n-doped semiconductor layer is formed on the n+-doped semiconductor layer to realize lateral current spreading. The invention can improve lighting efficiency by using the reverse bias tunneling junction and/or the lateral current spreading.
摘要:
Disclosed is a submount integrated photodiode package with an improved metal layer configuration and laser diode package using the same. In particular, a unitary laser diode of the invention provides a light receiving area overlying a semiconductor substrate to correspond to a radiation area of light emitted from a laser diode so as to reduce chip size in respect to a conventional one while maintaining a monitoring current identical to the conventional one as well as improve heat-radiating features. The invention provides a unitary laser diode package which comprises a light receiving area overlying a semiconductor substrate and having the same configuration as a radiation area of emission light from the laser diode and a metal layer adjacent to the light receiving area.
摘要:
A vertical GaN-based LED and a method of manufacturing the same are provided. The vertical GaN-based LED can prevent the damage of an n-type GaN layer contacting an n-type electrode, thereby stably securing the contact resistance of the n-electrode. The vertical GaN-based LED includes: a support layer; a p-electrode formed on the support layer; a p-type GaN layer formed on the p-electrode; an active layer formed on the p-type GaN layer; an n-type GaN layer for an n-type electrode contact, formed on the active layer; an etch stop layer formed on the n-type GaN layer to expose a portion of the n-type GaN layer; and an n-electrode formed on the n-type GaN layer exposed by the etch stop layer.
摘要:
Disclosed herein is a nitride semiconductor light emitting device, which is improved in luminance and reliability. The light emitting device, comprises an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer sequentially formed on a substrate, an n-side electrode formed on a portion of an upper surface of the n-type nitride semiconductor layer, and at least one intermediate layer formed between the substrate and the n-type nitride semiconductor layer. The intermediate layer has a multilayer structure of three or more layers having different band-gaps, and is positioned below the n-side electrode.
摘要:
Disclosed herein is a nitride semiconductor light emitting device, which is improved in luminance and reliability. The light emitting device, comprises an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer sequentially formed on a substrate, an n-side electrode formed on a portion of an upper surface of the n-type nitride semiconductor layer, and at least one intermediate layer formed between the substrate and the n-type nitride semiconductor layer. The intermediate layer has a multilayer structure of three or more layers having different band-gaps, and is positioned below the n-side electrode.
摘要:
A method for singulating a sapphire wafer, provided with semiconductor elements formed thereon, into unit chips includes (a) grinding a rear surface of the sapphire wafer so that the sapphire wafer has a designated thickness; (b) lapping the rear surface of the ground sapphire wafer so that the sapphire wafer has a designated thickness; (c) dry-etching the rear surface of the lapped sapphire wafer so that the sapphire wafer has a uniform thickness; and (d) scribing the rear surface of the dry-etched sapphire wafer.
摘要:
Disclosed herein is a nitride semiconductor light emitting device. The nitride semiconductor light emitting device comprises an n-type nitride semiconductor layer on a substrate, an active layer formed on the n-type nitride semiconductor layer so that a portion of the n-type nitride semiconductor layer is exposed, a p-type nitride semiconductor layer formed on the active layer, a high-concentration dopant area on the p-type nitride semiconductor layer, a counter doping area on the high-concentration dopant areas, an n-side electrode formed on an exposed portion of the n-type nitride semiconductor layer, and a p-side electrode formed on the counter doping area. A satisfactory ohmic contact for the p-side electrode is provided by an ion implantation process and heat treatment.
摘要:
There is provided a photonic crystal light emitting device including: a light emitting structure including first and second conductivity type semiconductor layers and an active layer interposed therebetween; a transparent electrode layer formed on the second conductivity type semiconductor layer, the transparent electrode layer having a plurality of holes arranged with a predetermined size and period so as to form a photonic band gap for light emitted from the active layer, whereby the transparent electrode layer includes a photonic crystal structure; and first and second electrode electrically connected to the first conductivity type semiconductor layer and the transparent electrode layer, respectively. The photonic crystal light emitting device has a transparent electrode layer formed of a photonic crystal structure defined by minute holes, thereby improved in light extraction efficiency.