摘要:
A planarized surface of a photoresist layer is formed above a layer formed over a hole in a blanket, conformal, silicon nitride layer which in turn is formed above a keyhole in metallization with SOG layers therebetween on the surface of a semiconductor device. A blanket, first photoresist layer was formed above the blanket silicon nitride to fill the damage to the surface caused by the hole. Then the first photoresist layer was stripped leaving a residual portion of the first photoresist layer filling the hole. Next, a blanket, second photoresist layer was formed above the blanket layer. The hole has a neck with a width from about 200 Å to about 500 Å and the hole has a deep, pocket-like gap with a cross-section with a width from about 500 Å to about 1200 Å below the narrow neck.
摘要:
This is a method of planarizing a surface of a photoresist layer formed above a layer formed over a gap in a blanket silicon nitride layer which in turn is formed above a keyhole in metallization with SOG layers therebetween on the surface of a semiconductor device. The following steps are performed. Form a blanket, first photoresist layer above the blanket silicon nitride with a damaged surface caused by the gap. Then strip the first photoresist layer leaving a residual portion of the first photoresist layer in the gap. Next, form a blanket, second photoresist layer above the blanket layer. The gap has a neck with a width from about 200 Å to about 500 Å and the gap has a deep, pocket-like cross-section with a width from about 500 Å to about 1,200 Å below the narrow neck. Partial stripping of the first photoresist layer, which follows, is performed by an etching process including wet and dry processing.
摘要:
A method for forming protection layers completely around a metal fuse to protect the metal fuse 74A and metal lines 74B from moisture corrosion from fuse opening and micro-cracks in dielectric layers. The invention surrounds the fuse on all sides with two protection layers: a bottom protection layer 70 and a top protection layer 78. The top protection layer 78 is formed over the fuse metal, the sidewalls of the metal fuse and the bottom protection layer 70. The protection layers 70 78 of the invention form a moisture proof seal structure around the metal fuse 74A and protect the metal fuse 74A and metal lines 74B from moisture and contaminates.
摘要:
A method for forming within a silicon semiconductor substrate employed within a microelectronics fabrication a silicon oxide dielectric layer. There is provided a silicon semiconductor substrate. There is formed upon the silicon semiconductor substrate a blanket silicon oxide pad oxide layer. There is then formed upon the pad oxide layer a patterned silicon nitride masking layer delineating active regions of the silicon semiconductor substrate from isolation regions. There is formed upon the isolation regions by thermal oxidation of the semiconductor silicon substrate in a dry oxidizing environment at an elevated temperature a thick silicon oxide dielectric layer employed as a field oxide (FOX) dielectric isolation layer formed through the silicon nitride patterned masking layer. There is then stripped from the silicon semiconductor substrate the patterned silicon nitride layer, permitting fabrication of microelectronics structures within and upon the semiconductor silicon substrate employing thick silicon oxide field oxide (FOX) dielectric isolation regions without foreign phases or inhomogeneities formed in the “bird's beak” region therein.
摘要:
A method of annealing an interlevel dielectric (IDL) layer 24 composed of PE-TEOS oxide before contact openings are formed in the ILD layer. The anneal prevents the contact openings 30 in IDL layer 24 from shifting and causing contact problems (contact oblique 33). The method begins by forming a first insulating layer 16 20 over a semiconductor structure 12. An ILD layer 24 composed of silicon oxide formed by a PECVD process using TEOS overlying the structure 12. In a key step, first rapid thermal anneal (RTA) is performed on the interlevel dielectric layer 24. The first RTA is preferably performed at a temperature in a range of between about 940 and 1100.degree. C. for a time in a range of between about 10 and 120 seconds. A contact hole 30 is then formed through the first insulating layer and the interlevel dielectric layer 24. The invention's first rapid thermal anneal prevents the ILD layer 24 from shrinking and shifting that distorts the contact hole 30.
摘要:
A method of rapid thermal annealing (RTA) a TEOS oxide layer 50 that underlies a silicon nitride stop layer 60. The RTA of the TEOS-Oxide ILD layer 50 prevents the nitride stop layer 60 and oxide ILD layer 50 from peeling in subsequent thermal steps. The process comprises providing a semiconductor structure 10 with an uneven surface; forming an interlevel dielectric layer 50 composed of PE-TEOS oxide over the structure 10; rapid thermal annealing (RTA) the third interlevel dielectric layer 50 at a temperature between about 850 and 1015.degree. C. for a time between about 10 and 50 seconds; depositing a silicon nitride layer 60 over the third interlevel dielectric layer 50; and planarizing the silicon nitride layer 60 and the third interlevel dielectric layer 50.
摘要:
A method for fabricating a cylindrical capacitor is described. Semiconductor device structures, including a capacitor node contact region, are formed on a semiconductor substrate. A first insulating layer is deposited over the device structures and planarized. A silicon nitride layer and then a second insulating layer are deposited over the first insulating layer. A contact opening having a first width is etched through the insulating layers and the silicon nitride layer to the capacitor node contact region. A photoresist mask is formed over the second insulating layer having a mask opening over the contact opening wherein the mask opening has a second width wider than the first width and wherein photoresist residue remains at the bottom of the contact opening. A second opening is etched in the second insulating layer corresponding to the mask opening wherein the photoresist residue protects the semiconductor substrate within the contact opening during etching. The photoresist mask and residue are removed. A first layer of polysilicon is deposited to fill the contact opening. The first polysilicon layer overlying the second insulating layer is polished away to form the bottom electrode of the capacitor. The second insulating layer is removed. A capacitor dielectric layer is deposited over the silicon nitride layer and the first polysilicon layer. A second polysilicon layer is deposited overlying the capacitor dielectric layer to form the top electrode of the capacitor.
摘要:
A method of forming a capacitor for DRAM or other circuits is described which avoids the problem of weak spots or gaps forming between a polysilicon contact plug and the first capacitor plate. A layer of first dielectric is formed on a substrate, A layer of second dielectric is formed on the layer of first dielectric. A layer of third dielectric is formed on the layer of second dielectric. A first hole is formed in the first, second, and third dielectrics exposing a contact region of the substrate. The first hole is then filled with a protective material and a second hole is formed in the layer of third dielectric using the layer of second dielectric as an etch stop. The first hole lies within the periphery of the second hole. The protective material prevents re-deposition of the third dielectric. The remaining protective material is then removed and a layer of conducting material is formed on the top surface of the layer of third dielectric, the sidewalls of the second hole, the sidewalls of the first hole, and the contact region of the substrate thereby forming a first capacitor plate.
摘要:
A method for fabricating capacitor-under-bit line (CUB) DRAMs with logic circuits is achieved. CUB are better than capacitor-over-bit line (COB) DRAM circuits because of reduced contact aspect ratios, but CUB require patterning the capacitor top plate over the capacitor rough topography while providing openings to bit line contacts between closely spaced capacitors. A bottom antireflecting coating (BARC) is used in a first method; a non-conform PECVD oxide is used in a second method to make reliable high aspect ratio openings between the capacitors. The BARC is deposited to fill the space between capacitors. A photo-resist layer with improved uniformity is then deposited over the BARC and exposed and developed to form an etch mask with improved resolution for the capacitor top plate. The BARC is plasma etched, and the polysilicon plate is patterned. In the second method a non-conformal PECVD oxide is deposited that is thicker on the top of the capacitors than in the narrow space between capacitors. The PECVD oxide is anisotropically etched back to form self-aligned openings over the bit line contacts, and openings are etched in the polysilicon capacitor top plate aligned over the bit line contact openings. A photoresist etch mask is then used to complete the patterning of the top plate.
摘要:
A robust dual damascene process is disclosed where the substructure in a substrate is protected from damage caused by multiple etchings required in a damascene process by filling a contact or via hole opening with a protective material prior to the forming of the conductive line opening of the damascene structure having an etch-stop layer separating a lower and an upper dielectric layer. In the first embodiment, the protective material is partially removed from the hole opening reaching the substructure prior to the forming of the upper conductive line opening by etching. In the second embodiment, the protective material in the hole is removed at the same time the upper conductive line opening is formed by etching. In a third embodiment, the disclosed process is applied without the need of an etch-stop layer for the dual damascene process of this invention.