摘要:
The present invention aims at providing a radio-frequency antenna unit capable of generating a high-density discharge plasma in a vacuum chamber. The radio-frequency antenna unit according to the present invention includes: a radio-frequency antenna through which a radio-frequency electric current can flow; a protective tube made of an insulator provided around the portion of the radio-frequency antenna that is in the vacuum chamber; and a buffer area provided between the radio-frequency antenna and the protective tube. The “buffer area” refers to an area where an acceleration of electrons is suppressed, and it can be formed, for example, with a vacuum or an insulator. Such a configuration can suppress an occurrence of an electric discharge between the antenna and the protective tube, enabling the generation of a high-density discharge plasma in the vacuum chamber.
摘要:
A thin-film forming sputtering system capable of a sputtering process at a high rate. A thin-film forming sputtering system includes: a vacuum container; a target holder located inside the vacuum container; a target holder located inside the vacuum container; a substrate holder opposed to the target holder; a power source for applying a voltage between the target holder and the substrate holder; a magnetron-sputtering magnet provided behind the target holder, for generating a magnetic field having a component parallel to a target; and radio-frequency antennae for generating radio-frequency inductively-coupled plasma within a space in the vicinity of the target where the magnetic field generated by the magnetron-sputtering magnet has a strength equal to or higher than a predetermined level. The radio-frequency inductively-coupled plasma generated by the radio-frequency antennae promotes the supply of electrons into the aforementioned magnetic field, so that the sputtering process can be performed at a high rate.
摘要:
The present invention provides a plasma processing device capable of inducing a strong radio-frequency electric field within a vacuum container while preventing sputtering of the antenna conductor, an increase in the temperature of the antenna conductor and the formation of particles. A plasma processing device according to the present invention includes a vacuum container, a radio-frequency antenna placed between an inner surface and an outer surface of a wall of the vacuum container, and a dielectric separating member for separating the radio-frequency antenna from an internal space of the vacuum container. As compared to a device using an external antenna, the present device can induce a stronger magnetic field in the vacuum container. The separating member has the effects of preventing the radio-frequency antenna from undergoing sputtering by the plasma produced in the vacuum container, suppressing an increase in the temperature of the radio-frequency antenna, and preventing the formation of particles.
摘要:
A thin-film formation sputtering device capable of forming a high-quality thin film at high rates is provided. A sputtering device includes a target holder provided in a vacuum container, a substrate holder facing the target holder, a means for introducing a plasma generation gas into the vacuum container, a means for generating an electric field for sputtering in a region including a surface of a target, an antenna placement room provided between inner and outer surfaces of a wall of the vacuum container as well as separated from an inner space of the vacuum container by a dielectric window, and a radio-frequency antenna, which is provided in the antenna placement room, for generating a radio-frequency induction electric field in the region including the surface of the target held by the target holder.
摘要:
Plasma producing method and apparatus wherein a plurality of high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power supplied from a high-frequency power supply device (including a power source, a phase controller and the like) is applied to a gas in the chamber from the antennas to produce inductively coupled plasma. At least some of the plurality of high-frequency antennas are arranged in a fashion of such parallel arrangement that the antennas successively neighbor to each other and each of the antennas is opposed to the neighboring antenna. The high-frequency power supply device controls a phase of a high-frequency voltage applied to each antenna, and thereby controls an electron temperature of the inductively coupled plasma.
摘要:
A plasma generating method and apparatus which use plural high-frequency antennas 2 to generate inductively coupled plasma, and a plasma processing apparatus using the apparatus. The antennas 2 are identical to one another. Application of a high-frequency electric power to the antennas 2 is performed from a high-frequency power source 4 which is disposed commonly to the antennas 2, through one matching circuit 5 and one busbar 3. The busbar 3 is partitioned into sections the number of which is equal to that of the antennas, while setting a portion which is connected to the matching circuit 5, as a reference. One-end portions of the antennas are connected to corresponding sections 31, 32, 33 through power supplying lines 311, 321, 331. The other end portions of the antennas are grounded. The impedances of the sections of the busbar, and those of the power supplying lines are adjusted so that same currents flow through the antennas, and a same voltage is applied to the antennas. Therefore, the inductively coupled plasma is generated while uniformalizing high-frequency electric powers supplied to the antennas 2.
摘要:
A plasma processing device according to the present invention includes a plasma processing chamber, a plasma producing chamber communicating with the plasma processing chamber, a radio-frequency antenna for producing plasma, a plasma control plate for controlling the energy of electrons in the plasma, as well as an operation rod and a moving mechanism for regulating the position of the plasma control plate. In this plasma processing device, the energy distribution of the electrons of the plasma produced in the plasma producing chamber can be controlled by regulating the distance between the radio-frequency antenna 16 and the plasma control plate by simply moving the operation rod in its longitudinal direction by the moving mechanism. Therefore, a plasma process suitable for the kind of gas molecules to be dissociated and/or their dissociation energy can be easily performed.
摘要:
The present invention aims at providing a radio-frequency antenna unit capable of generating a high-density discharge plasma in a vacuum chamber. The radio-frequency antenna unit according to the present invention includes: a radio-frequency antenna through which a radio-frequency electric current can flow; a protective tube made of an insulator provided around the portion of the radio-frequency antenna that is in the vacuum chamber; and a buffer area provided between the radio-frequency antenna and the protective tube. The “buffer area” refers to an area where an acceleration of electrons is suppressed, and it can be formed, for example, with a vacuum or an insulator. Such a configuration can suppress an occurrence of an electric discharge between the antenna and the protective tube, enabling the generation of a high-density discharge plasma in the vacuum chamber.
摘要:
One or more high-frequency antennas is allocated to and disposed in one cubic space C having a side of 0.4 [m] in a plasma generating chamber 1 or in each of plural cubic spaces C, each having a side of 0.4 [m], adjacent ones of the plural cubic spaces being continuous to each other without forming a gap therebetween. The total length L [m] of the high-frequency antennas in each of the cubic spaces C is set in a range which satisfies relationships of (0.2/P)
摘要:
Plasma producing method and apparatus as well as plasma processing apparatus including the plasma producing apparatus wherein one or more high-frequency antennas are arranged in a plasma producing chamber, and a high-frequency power is applied to a gas in the chamber from the antenna(s) to produce inductively coupled plasma. Impedance of the high-frequency antenna is set in a range of 45 Ω or lower.