摘要:
A barrier-film forming apparatus that forms a barrier film on an inner face of a container (12) having a concave or convex portion (12a) as a processing target, including: a dielectric member (50) having a cavity sized to enclose the container (12), an external electrode (13) covering an outer circumference of the dielectric member (50), an exhaust unit installed on an end face of the external electrode (13) on a side where a mouth (11) of the container (12) is located, with an insulating member (26) interposed therebetween, and depressurizing inside of the container (12) through an exhaust pipe (14), an internal electrode (17) inserted from a side of the exhaust pipe (14) and also serving as a gas blowout unit that blows out medium gas (19) for generating a barrier film into the container (12), and an electric-field applying unit that applies an electric field for generating exhaust between the external electrode (13) and a ground electrode.
摘要:
A barrier-film forming apparatus that forms a barrier film on an inner face of a container having a concave or convex portion as a processing target, including: a dielectric member having a cavity sized to enclose the container, an external electrode covering an outer circumference of the dielectric member, an exhaust unit installed on an end face of the external electrode on a side where a mouth of the container is located, with an insulating member interposed therebetween, and depressurizing inside of the container through an exhaust pipe, an internal electrode inserted from a side of the exhaust pipe and also serving as a gas blowout unit that blows out medium gas for generating a barrier film into the container, and an electric-field applying unit that applies an electric field for generating exhaust between the external electrode and a ground electrode.
摘要:
An inner electrode for barrier film formation is an inner electrode for barrier film formation that is inserted inside a plastic container having an opening, supplies a medium gas to the inside of the plastic container, and supplies high frequency power to an outer electrode arranged outside the plastic container, thereby generating discharge plasma on the inner surface of the plastic container to form a barrier film on the inner surface of the plastic container, and that is provided with a gas supply pipe (101) having a gas flow path (101a) to supply a medium gas (G) and an insulating member (103) screwed into an end portion of the gas supply pipe (101) to be flush therewith and having a gas outlet (102) communicated with the gas flow path (101a).
摘要:
An inner electrode for barrier film formation is an inner electrode for barrier film formation that is inserted inside a plastic container having an opening, supplies a medium gas to the inside of the plastic container, and supplies high frequency power to an outer electrode arranged outside the plastic container, thereby generating discharge plasma on the inner surface of the plastic container to form a barrier film on the inner surface of the plastic container, and that is provided with a gas supply pipe (101) having a gas flow path (101a) to supply a medium gas (G) and an insulating member (103) screwed into an end portion of the gas supply pipe (101) to be flush therewith and having a gas outlet (102) communicated with the gas flow path (101a).
摘要:
An inner electrode for barrier film formation is an inner electrode for barrier film formation that is inserted inside a plastic container having an opening, supplies a medium gas to the inside of the plastic container, and supplies high frequency power to an outer electrode arranged outside the plastic container, thereby generating discharge plasma on the inner surface of the plastic container to form a barrier film on the inner surface of the plastic container, and that is provided with a gas supply pipe having a gas flow path to supply a medium gas and an insulating member screwed into an end portion of the gas supply pipe to be flush therewith and having a gas outlet communicated with the gas flow path.
摘要:
An inner electrode for barrier film formation is an inner electrode for barrier film formation that is inserted inside a plastic container having an opening, supplies a medium gas to the inside of the plastic container, and supplies high frequency power to an outer electrode arranged outside the plastic container, thereby generating discharge plasma on the inner surface of the plastic container to form a barrier film on the inner surface of the plastic container, and that is provided with a gas supply pipe having a gas flow path to supply a medium gas and an insulating member screwed into an end portion of the gas supply pipe to be flush therewith and having a gas outlet communicated with the gas flow path.
摘要:
An optical system has fluoride compounds provided in an environment exposed by vacuum ultraviolet light or plasma light, which has higher photon energy than an absorption wavelength of a base stock of the optical system. 1-layer of a protective film of SiO2 or metal oxides having a film thickness of 2-20 nm is formed at least on the light irradiation side (inner side) of the optical system to prevent the stripping of the fluorine atoms from the surface of the optical system. In addition, the protective film is a 1-layer film selected from one of SiO2, MgO, TiO2, or ZrO2.
摘要:
The objectives of the present invention are to prevent or inhibit the deterioration of optical systems that determine the longevity of an optical apparatus which delivers effects such as light transmission, diffraction, reflection, spectrum generation, and interference, and these combinations, and by so doing, decrease the frequency of maintenance operations such as window replacement and to reduce the costs for such operations. This invention is characterized by steps of creating a near vacuum zone with a presence of active energy to excite an oxidation reaction of carbon wherein the near vacuum zone faces the lighting surfaces of the optical system; generating negative ions or radicals in the near vacuum zone such as unstable chemical seeds containing oxygen atoms, such as OH radicals, OH− ions, ozone, O2− ions, O-radicals; and removing or reducing the accumulated carbon which deposits on the lighting surface, by reacting the deposited carbon with the negative ions or radicals. More specifically, the method according to this invention is characterized by the step of supplying active energy while supplying a flow of gases containing oxygen atoms such as water gas or oxidizing gas (for example, water vapor, oxygen, hydrogen peroxide, ozone or mixtures of said gases with inactive gases (including air)) into the near vacuum zone, thereby removing or reducing the accumulated carbon which deposits on the lighting surface by exciting the oxidation reaction of the accumulated carbon with the supplied active energy.
摘要:
The objectives of the present invention are to prevent or inhibit the deterioration of optical systems that determine the longevity of an optical apparatus which delivers effects such as light transmission, diffraction, reflection, spectrum generation, and interference, and these combinations, and by so doing, decrease the frequency of maintenance operations such as window replacement and to reduce the costs for such operations. This invention is characterized by steps of creating a near vacuum zone with a presence of active energy to excite an oxidation reaction of carbon wherein the near vacuum zone faces the lighting surfaces of the optical system; generating negative ions or radicals in the near vacuum zone such as unstable chemical seeds containing oxygen atoms, such as OH radicals, OH− ions, ozone, O2− ions, O-radicals; and removing or reducing the accumulated carbon which deposits on the lighting surface, by reacting the deposited carbon with the negative ions or radicals. More specifically, the method according to this invention is characterized by the step of supplying active energy while supplying a flow of gases containing oxygen atoms such as water gas or oxidizing gas (for example, water vapor, oxygen, hydrogen peroxide, ozone or mixtures of said gases with inactive gases (including air)) into the near vacuum zone, thereby removing or reducing the accumulated carbon which deposits on the lighting surface by exciting the oxidation reaction of the accumulated carbon with the supplied active energy.
摘要:
A vacuum ultraviolet lamp (3) ionizes a chemical substance contained in exhaust gas Gs. The chemical substance ionized is trapped in an ion trapping apparatus (10) in which a radio frequency electric field is formed. Energy is applied to an ion group in the ion trapping apparatus (10) with a SWIFT waveform comprising a frequency component excluding a frequency corresponding to an orbital resonance frequency of ions of the chemical substance to remove an impurity. Energy is then applied to the ion group with a TICKLE waveform having a frequency component corresponding to the orbital resonance frequency of the ions of the chemical substance to fragmentate the ions of the chemical substance. A mass of the fragment is then measured with a mass spectrometer (4) to identify the chemical substance.