摘要:
Liquid crystal displays (10) and touch sensitive displays (41) are stacked with one or more solar cells (15) such that light passing through the displays will illuminate the light receiving active surface of the solar cells (15). No reflector or polarizer need be used when the liquid crystal display (10) uses cholesteric or polymer dispersed liquid crystals. When using supertwist nematic or twisted nematic liquid crystals, a reflector (21) can be used that comprises a selective color reflector. The resultant display/solar cell can be utilized in combination with a device such as a wireless communications device (62) with the solar cell (15) providing electricity to the display (61), the wireless communications device (62), or both. A mask (71) can be used to occlude surface features on the solar cell (15) as appropriate to provide a substantially uniformly colored appearance.
摘要:
Displays such as liquid crystal displays (10), organic light emitting diode displays, and touch sensitive displays (41) are stacked with one or more solar cells (15) such that light passing through the displays will illuminate the light receiving active surface of the solar cells (15). No reflector or polarizer need be used when the liquid crystal display (10) uses cholesteric or polymer dispersed liquid crystals. When using supertwist nematic or twisted nematic liquid crystals, a reflector (21) can be used that comprises a selective color reflector. The resultant display/solar cell can be utilized in combination with a device such as a wireless communications device (62) with the solar cell (15) providing electricity to the display (61), the wireless communications device (62), or both. A mask (71) can be used to occlude surface features on the solar cell (15) as appropriate to provide a substantially uniformly colored appearance.
摘要:
A multichip module having high density optical and electrical interconnections between integrated circuit chips includes a substrate overlaying an array of integrated circuit chips. An optical transmitter generates a first optical beam through the substrate and an optical detector receives a second optical beam through the substrate. A hologram is positioned in the path of at least one of the first and second optical beams. An array of electrical contact pads is located on the substrate corresponding to the array of electrical contact pads on the respective integrated circuit chips. A pattern of electrical interconnection lines is located on the substrate for electrically interconnecting the integrated circuit chips. A solder bump between electrical contact pads on the substrate and on the integrated circuit chips establish electrical connections between the substrate and the integrated circuit chips, and also facilitate alignment of the integrated circuit chips with respect to the substrate. The optical transmitter and detector may be mounted on/in the substrate or on/in the integrated circuit chips. The optical transmitter and detector may also be used to provide optical connections external to the microelectronic module, using a holographic substrate to optically link modules. The substrate may also be used to establish optical alignment of the hologram to an underlying optical emitter and/or optical detector without establishing electrical connections thereto.
摘要:
An integrated circuit chip having solder bumps thereon may be tested using a temporary substrate having substrate pads corresponding to locations of the input/output pads on the chip and having a sacrificial conductor layer on the temporary substrate pads. The solder bumps are placed adjacent the corresponding sacrificial metal layer and heated to form an electrical and mechanical connection between the chip and the temporary substrate. The chip is then tested and/or burned-in on the temporary substrate. After testing/burn-in, the sacrificial metal layer is dissolved into the solder bumps by heating. The integrated circuit chip, including a solder bump having the dissolved sacrificial metal layer therein, may be easily removed from the temporary substrate. Solder bumps may also be formed on the temporary substrate and transferred to unbumped chips. Solder bumps with different characteristics may be formed by varying the current-time product to each individual pad of the temporary substrate during a plating operation.
摘要:
A printed multilayer electronic circuit has printed electronic components on a first level circuit. Electrical conductors are printed on the first level circuit, electrically connected to the electronic components. A layer of dielectric material is printed over the printed electrical conductors. The dielectric layer contains apertures or openings that extend vertically through the dielectric layer down to the electrical conductors. A second set of electrical conductors are then printed on the dielectric layer, situated around the apertures. Electrically conductive material is printed in the apertures so that an electrical connection is made from the second set of electrical conductors to the electrical conductors on the lower level. A second level circuit having additional electronic components is then formed on the dielectric layer and the second set of conductors, so that these electronic components are electrically connected to the electronic components on the first level circuit through the path of the printed second set of electrical conductors, the printed electrically conductive material, and the printed electrical conductors on the lower level.
摘要:
A microelectronic assembly (10) includes a polymeric card (12) that includes a substantially planar major surface (18). An integrated circuit component (14) is embedded in the polymeric card (12) and has a first contact (20) and a second contact (22). An antenna element (16) is formed of a singular metallic strip and includes a first terminal (26) electrically connected to the first contact (20), a second terminal (28) electrically connected to the second contact (22), and a loop (30) intermediate the first terminal (26) and the second terminal (28). The first terminal (26) includes a first outer surface (32) and the second terminal (28) includes a second outer surface (34). The first outer surface (32) and the second outer surface (34) are exposed at the major surface (18) and are coextensive therewith. The loop (30) is embedded within the polymeric card (12) and spaced apart from the major surface (18).
摘要:
A multichip module having high density optical and electrical interconnections between integrated circuit chips includes a substrate overlaying an array of integrated circuit chips. An optical transmitter generates a first optical beam through the substrate and an optical detector receives a second optical beam through the substrate. A hologram is positioned in the path of at least one of the first and second optical beams. An array of electrical contact pads is located on the substrate corresponding to the array of electrical contact pads on the respective integrated circuit chips. A pattern of electrical interconnection lines is located on the substrate for electrically interconnecting the integrated circuit chips. A solder bump between electrical contact pads on the substrate and on the integrated circuit chips establish electrical connections between the substrate and the integrated circuit chips, and also facilitate alignment of the integrated circuit chips with respect to the substrate. The optical transmitter and detector may be mounted on/in the substrate or on/in the integrated circuit chips. The optical transmitter and detector may also be used to provide optical connections external to the microelectronic module, using a holographic substrate to optically link modules. The substrate may also be used to establish optical alignment of the hologram to an underlying optical emitter and/or optical detector without establishing electrical connections thereto.
摘要:
An integrated circuit chip having solder bumps thereon may be tested using a temporary substrate having substrate pads corresponding to locations of the input/output pads on the chip and having a sacrificial conductor layer on the temporary substrate pads. The solder bumps are placed adjacent the corresponding sacrificial metal layer and heated to form an electrical and mechanical connection between the chip and the temporary substrate. The chip is then tested and/or burned-in on the temporary substrate. After testing/burn-in, the sacrificial metal layer is dissolved into the solder bumps by heating. The integrated circuit chip, including a solder bump having the dissolved sacrificial metal layer therein, may be easily removed from the temporary substrate. Solder bumps may also be formed on the temporary substrate and transferred to unbumped chips. Solder bumps with different characteristics may be formed by varying the current-time product to each individual pad of the temporary substrate during a plating operation.
摘要:
A method and resulting structure is disclosed in which a metal-to-metal bond is formed by heating the surfaces to be bonded in an oxidizing ambient atmosphere until the desired bond is achieved. Heating takes place at 700.degree. C.-1200.degree. C. and bonding may be enhanced by applying pressure between the surfaces while heating.
摘要:
Brain response signals of a user, such as electroencephalogram signals, and in particular visually evoked potential signals that correspond to predetermined illumination patterns, are detected and utilized to ascertain selection of specific functions and/or actions as desired by that user. Sources of illumination that exhibit such patterns are arranged to physically correspond to indicia of such functions and actions to facilitate knowing selection thereof.