摘要:
A cleaning tool facilitating removal of particles from a surface is provided which includes an acoustic wave generator and one or more light-emitting diodes. The acoustic wave generator, which is configured to direct acoustic waves towards the surface to be cleaned, may include an acoustic transducer that facilitates generating the acoustic waves, and an acoustic coupler substrate through which the acoustic waves propagate. The light-emitting diode(s), which is configured to direct light towards the surface to be cleaned, is coupled to the acoustic coupler substrate of the acoustic wave generator. The acoustic wave generator and the light-emitting diode(s) are spaced from the surface to be cleaned, and are configured to selectively concurrently direct overlapping, at least partially, acoustic waves and light energy towards the surface to facilitate removal of particles by breaking bonds between the particles and the surface.
摘要:
An apparatus is provided for protecting a surface of interest from particle contamination, and particularly, during transitioning of the surface between atmospheric pressure and vacuum. The apparatus includes a chamber configured to receive the surface, and a protector plate configured to reside within the chamber with the surface, and inhibit particle contamination of the surface. A support mechanism is also provided suspending the protector plate away from an inner surface of the chamber. The support mechanism holds the protector plate within the chamber in spaced, opposing relation to the surface to provide a gap between the protector plate and the surface which presents a diffusion barrier to particle migration into the gap and onto the surface, thereby inhibiting particle contamination of the surface.
摘要:
Methods are provided for fabricating a process structure, such as a mask or mask blank. The methods include, for instance: providing a silicon substrate; forming a multi-layer, extreme ultra-violet lithography (EUVL) structure over the silicon substrate; subsequent to forming the multi-layer EUVL structure over the crystalline substrate, reducing a thickness of the silicon substrate; and attaching a low-thermal-expansion material (LTEM) substrate to one of the multi-layer EUVL structure, or the reduced silicon substrate. In one implementation, the silicon substrate is a silicon wafer with a substantially defect-free surface upon which the multi-layer EUVL structure is formed. The multi-layer EUVL structure may include multiple bi-layers of a first material and a second material, as well as a capping layer, and optionally, an absorber layer, where the absorber layer is patternable to facilitating forming a EUVL mask from the process structure.
摘要:
Semiconductor structures having a first layer including an n-type III-V semiconductor material and a second layer including an M(InP)(InGaAs) alloy, wherein M is selected from Ni, Pt, Pd, Co, Ti, Zr, Y, Mo, Ru, Ir, Sb, In, Dy, Tb, Er, Yb, and Te, and combinations thereof, are disclosed. The semiconductor structures have a substantially planar interface between the first and second layers. Methods of fabricating semiconductor structures, and methods of reducing interface roughness and/or sheet resistance of a contact are also disclosed.
摘要:
The present invention includes methods directed to improved processes for producing a monolayer of sulfur on the surface of a semiconductor. As a surface layer, it functions to passivate the surface; if annealed, it provides a doping element.
摘要:
Embodiments of the present disclosure relate to methods and apparatus for reduction of particle defects from a semiconductor surface, such as for example the reduction of sub 100 micron defects. Methods and apparatus of the present disclosure are particularly useful in the manufacture of semiconductor devices when employing extreme ultraviolet photolithography. In some embodiments, a fluid stream is provided through a nozzle at conditions such that cavitation bubbles are formed, the cavitation bubbles being present in a stable cavitation state or regime. The fluid stream is flowed over at least a portion of the surface. A shockwave is generated or created in the fluid stream. The shockwave momentarily increases acoustic pressure in the fluid causing the cavitation bubbles to collapse and produce a jet or pulse of high fluid flow which removes particle defects from the surface.
摘要:
Systems and methods are provided facilitating a steaming fluid flow utilizing acoustic waves. A system includes an acoustic wave generator and an acoustic coupler associated with the acoustic wave generator and coupling acoustic waves generated by the acoustic wave generator into a fluid. The acoustic coupler includes one or more acoustic coupling lenses, which direct the acoustic waves into the fluid and facilitate, at least in part, a streaming fluid flow in a common direction. In an enhanced embodiment, the common flow direction is at an angle to a direction acoustic waves are generated, and the acoustic coupling lens(es), in directing the acoustic waves into the fluid, redirects the acoustic waves from the direction of acoustic wave generation. The acoustic wave generator generates the acoustic waves in the megahertz or gigahertz range, for example, with a frequency of 20 MHz or higher.
摘要:
Methods, systems, and devices which result from, or facilitates, convenient processing of partial dies of a semiconductor chip in a lithography process are disclosed. Embodiments utilize an exposure through an imprint-style template which does not come in physical contact with the partial die. In one embodiment, a semiconductor process is disclosed which has at least one full die and at least one partial die. The semiconductor chip is fabricated, in part, by using an etching process which utilizes an imprint template configured to be exposed to the at least one full die when the imprint template is in contact with resist which has been dispensed onto the at least one full die. Further, at least one partial die of the semiconductor chip is configured to be exposed to the imprint template without the template contacting resist dispensed onto the at least one partial die.
摘要:
Methods and systems for retaining grinding efficiency during a backgrinding process such as, for example, backgrinding of a through-via substrate such as an embedded through silicon via wafer. A grinding fluid may include a chemical agent that is configured to remove accumulated materials from the grinding wheel.
摘要:
Methods for fabricating nanoscale features are disclosed. One technique involves depositing onto a substrate, where the first layer may be a silicon layer and may subsequently be etched. A second layer and third layer may be deposited on the etch first layer, followed by the deposition of a silicon cap. The second and third layer may be etched, exposing edges of the second and third layers. The cap and first layer may be removed and either the second or third layer may be etched, creating a nanoscale pattern.