Abstract:
A surgical device for closure Atrial Septal Defect (ASD) with minimally invasive approach and a transcatheter device for closure ASD using pericardial patch includes a distal jaw that is distal relative to a person holding the device and a proximal jaw, a guide rod which drives the jaws to pass a pericardium patch through a patient's ASD and fix the pericardium patch onto an ASD rim.
Abstract:
Methods of stapling a nasal septum using a nasal septal stapling apparatus comprising obtaining a nasal septal stapling apparatus comprising a body, at least one arm extending from the body and comprising an end distal from the body, a staple bank comprising a plurality of staples proximal to the end of the at least one arm, and a staple moving member configured to discharge a staple from the staple bank, and a trigger. The methods comprise placing the at least one arm against a nasal septum of a patient and moving the trigger, wherein moving the trigger causes the staple moving member to discharge a staple from the staple bank and through the nasal septum of the patient.
Abstract:
A medical system for treating an internal tissue opening can include a closure device and associated delivery device. The closure device can include a body portion operatively associated with a first anchor and a second anchor. The body portion can include a plurality of segments defining a multi-cellular structure. A segment can define a variable width along a length of the segment to have a substantially equal stress level along the length when deflected. The closure device can be configured to apply lateral force to tissue of the internal tissue opening to bring tissue together for closure. The closure device can have a substantially flat aspect, and have a depth thickness that is substantially greater than the thickness or width of a majority of the members forming the closure device. The closure device can also include a member adapted to induce tissue growth.
Abstract:
A medical system for treating an internal tissue opening can include a closure device and associated delivery device. The closure device can include a body portion operatively associated with a first anchor and a second anchor. The body portion can include a plurality of segments defining a multi-cellular structure. The closure device can be configured to apply lateral force to tissue of the internal tissue opening to bring tissue together. The closure device can have a substantially flat aspect, and have a depth thickness that is substantially greater than the thickness or width of a majority of the members forming the closure device to reduce out of plane bending. The closure device can also include a member adapted to induce tissue growth.
Abstract:
The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
Abstract:
A method of occluding a defect in a patient is provided. The method includes inserting a placement member, such as a wire guide, into a defect; advancing the placement member to a desired location; inserting the placement member into a lumen in an occluding member, such as a plug or a graft; and advancing the occluding member to the desired location by inserting the placement member into a lumen in a pusher member and pushing the occluding member with the pusher member until the occluding member reaches the desired location. Medical devices and systems for occluding defects are also provided.
Abstract:
Described are methods and systems for treating fistulae and other passageways and openings in the body. In certain aspects, an anchored suture is provided that extends from at or near a first fistula opening and through a fistula tract toward a second fistula opening. Various modes of anchoring may be used in this regard including, in some modes, having the suture extend from a deployed anchoring member positioned in and/or around the first opening. The anchored suture, which has a more slender cross sectional dimension relative to the fistula tract through which it extends, is capable of receiving an optional fill substance therealong in the tract. A fill substance can be or include a variety of biodegradable and/or non-biodegradable objects and materials including flowable and non-flowable materials.
Abstract:
Disclosed herein is an implantable fistula closure device. The device may include an expandable longitudinally segmented body including a proximal end and a distal end. The segmented body may further include a plurality of porous bodies and a connecting member operably joining together the plurality of porous bodies. The plurality of porous bodies includes a first porous body with a proximal end and a distal end and a second porous body with a proximal end and a distal end, and the connecting member operably connects the proximal end of the first porous body with the distal end of the second porous body.