Abstract:
Disclosed herein is a general method for the preparation of complexes containing a quaternary onium group in an inert ligand. Some of these complexes may be represented by formula 1: Methods for the preparation of complexes of formula 1, the preparation of intermediates and the use of complexes of formula 1 in metathesis reactions and a method for conducting an olefin metathesis reaction are also described.
Abstract:
A compound comprising a class of sulfonated triorganophosphine compounds of formula R1R2P—R3[—O—(CH2)n—(SO3M)]m, wherein the R1 and R2 are selected individually from alkyl, aralkyl, and alicyclic groups, wherein R3 represents a divalent or polyvalent alkylene or alicyclic radical that is bonded to the phosphorus atom and to one or more sulfonate substituents via an alkylether link, and further wherein R3 does not contain any aryl moieties; n is an integer reflecting a number of methylene groups in the alkylether link; M represents a monovalent cation; and m is an integer representing a total number of sulfonated alkylether substituents. The compound is useful as a ligand in transition metal-ligand complex catalysts that are capable of catalyzing the hydroformylation of an olefinically-unsaturated compound with carbon monoxide and hydrogen to form one or more corresponding aldehyde products. The ligand is incapable of alky-aryl exchange, thereby leading to reduced ligand usage and improving ligand and rhodium recovery and recycling.
Abstract:
A process for solubilizing an organometallic compound in a fluorinated solvent to form an organometallic solution by adding and reacting a co-solubilizer having a partly fluorinated polymer, an organometallic compound, and a fluorinated solvent, and the co-solubilizer has the ability to cause the organometallic compound to become miscible in a fluorinated solvent, and further, the co-solubilizer is not a catalyst and is present in the final organometallic solution.
Abstract:
A process for solubilizing an organometallic compound in a fluorinated solvent to form an organometallic solution by adding and reacting a co-solubilizer having a partly fluorinated polymer, an organometallic compound, and a fluorinated solvent, and the co-solubilizer has the ability to cause the organometallic compound to become miscible in a fluorinated solvent, and further, the co-solubilizer is not a catalyst and is present in the final organometallic solution.
Abstract:
The present invention relates to a process for the hydroformylation of terminal and internal olefins in a two-phase system using novel metal catalysts. The two-phase system consists of an aqueous and an organic phase. The metals belong to group VIII of the Periodic Table, e.g., Rh, Ru, Ir, Co or Pd. The ligands for the metals are novel phosphane-modified .beta.-cyclodextrins which are water-soluble.
Abstract:
An efficient method for the preparation of backbone-substituted imidazolinium salts for use as N-heterocyclic carbene ligands, e.g., for organometallic catalysts is provided. These functionalized N-heterocyclic carbene ligands are used to prepare solid-supported catalysts, e.g., for olefin metathesis.
Abstract:
The present invention relates to a process for the catalytic oxidation of sulphide, mono- and/or dihydrogen sulphide, comprising the step of contacting the sulphide, mono- and/or dihydrogen sulphide in the presence of oxygen with a chelate complex comprising (i) a metal cation selected from the group consisting of Fez+, Mnz+, Niz+ and Coz+, where z=2 or 3, and (ii) a chelate ligand containing a porphyrin, a phthalocyanine or a porphyrazine ring coordinated to the metal cation, and at least one cationic substituent covalently attached to the ring in the chelate ligand.
Abstract:
A compound comprising a class of sulfonated triorganophosphine compounds of formula R1R2P—R3[—O—(CH2)n—(SO3M)]m, wherein the R1 and R2 are selected individually from alkyl, aralkyl, and alicyclic groups, wherein R3 represents a divalent or polyvalent alkylene or alicyclic radical that is bonded to the phosphorus atom and to one or more sulfonate substituents via an alkylether link, and further wherein R3 does not contain any aryl moieties; n is an integer reflecting a number of methylene groups in the alkylether link; M represents a monovalent cation; and m is an integer representing a total number of sulfonated alkylether substituents. The compound is useful as a ligand in transition metal-ligand complex catalysts that are capable of catalyzing the hydroformylation of an olefinically-unsaturated compound with carbon monoxide and hydrogen to form one or more corresponding aldehyde products. The ligand is incapable of alky-aryl exchange, thereby leading to reduced ligand usage and improving ligand and rhodium recovery and recycling.
Abstract:
A method for separating a homogeneous catalyst from a solution includes forming a host-guest compound between a first isomer of the catalyst and inclusion compound in the solution and isolating the host-guest compound from the solution. The catalyst may be released from the inclusion compound by converting the first isomer of the catalyst to a second isomer of the catalyst.
Abstract:
Disclosed herein is a general method for the preparation of complexes containing a quaternary onium group in an inert ligand. Some of these complexes may be represented by formula 1: Methods for the preparation of complexes of formula 1, the preparation of intermediates and the use of complexes of formula 1 in metathesis reactions and a method for conducting an olefin metathesis reaction are also described.