Abstract:
The invention relates to an emergency braking device comprising an actuator (2), a pressurizing circuit (3) supplying the actuator (2) via a control pressure and a discharge circuit (4), characterized in that the discharge circuit (4) comprises means (13, 14) for controlling the pressure and/or flow rate of the supply fluid of the actuator (2) during a discharge of the actuator, these control means (13, 14) being configured to define an intermediate pressure between a low pressure level and the control pressure of the actuator (2).
Abstract:
When braking force is applied to a vehicle by the operation of a brake actuator, this control device, which is a vehicle brake control device, calculates the time to stop TTS on the basis of the relationship between the vehicle speed VS and the vehicle deceleration DVS. In addition, when the calculated time to stop TTS becomes less than a restriction determination time TTSTH, the control device stops the operation of the supply pumps of the brake actuator.
Abstract:
A braking system for vehicles comprising a pilot pump provided with a manual actuation means, the pilot pump being fluidically connected to a hydraulic actuator device in turn operatively connected to a braking device associated with a wheel of said vehicle, wherein the hydraulic actuator device delimits a first and a second actuation chamber fluidically separated by a movable septum along an axial direction X-X, the first actuation chamber containing fluid pressurised by the pilot pump, the second actuation chamber being filled with fluid under pressure and being provided with a delivery duct fluidically connected to said braking device. Advantageously, the hydraulic actuator device comprises a by-pass, offset axially with respect to said delivery duct and fluidically connected with the latter, the movable septum being connected to motor means in order to translate axially, independently of the braking action imposed through the manual actuation means of the pilot pump, the system comprising a processing unit and control operatively connected with the motor means and programmed so as to pass from a condition of standard operation or deactivation of the motor means, in which the movable septum connects the first actuation chamber with the by-pass and with the second actuation chamber, to a braking correction condition in which the motor means are activated to move the movable septum so that the first actuation chamber is fluidically separated from the by-pass and the second actuation chamber. In this way, the second actuation chamber, fluidically connected to the delivery duct, commands the actuation of the braking device, excluding the action imposed by the user through the pressurised fluid in the first actuation chamber.
Abstract:
A method for adjusting the brake play of a hydraulic brake system, for a motor vehicle having at least one brake caliper with a brake piston, a hydraulic pump connected with a brake caliper, and an electric motor driving the hydraulic pump. The following steps are performed: detecting a first rotational position of a pump part by a position sensor and generating a reduced pressure in the pressure chamber, which causes the piston to reset, by suction of a volume of the brake medium determined by a predefined target rotational angle of the pump part, via a suction-side hydraulic connection with the pressure chamber, By controlling the electric motor by means of a PWM signal the predefined target rotational angle of the pump part causes a rotation of the pump part into a second rotational position, wherein the controlled variable is determined depending on the deviation of the actual rotational angle, determined based on the second rotational position, from the target angle.
Abstract:
There is provided a low-cost, power-saving brake control apparatus that is capable of performing control with good pressure regulation precision. The brake control apparatus has adjusting motor rotational speed computation means for causing pressurization control means to set a pressure regulation valve in a closed state and carry out an action of driving a pump at a predetermined motor rotational speed a plurality of times at different motor rotational speeds, and for computing in advance a adjusting motor rotational speed on the basis of the ratio between each of the motor rotational speeds and each of the pressure gradients for when the pressurization force of a pump driven at each of the motor rotational speeds has reached a predetermined pressure; and requested motor rotational speed correction means for correcting the requested motor rotational speed on the basis of the adjusting motor rotational speed in a case where the pressurization control means increases the pressure of the wheel cylinders and generates braking force in the wheels.
Abstract:
A brake control device for a brake system. The control device can perform both an interlocking brake control and an antilock brake control. The brake system includes a front-wheel hydraulic circuit, a front-wheel-side braking part; a rear-wheel hydraulic circuit, a rear-wheel-side braking part; and an electrically-operated pump which pressurizes the brake fluid. The brake control device includes a usual voltage mode where the interlocking brake control or the anti-lock brake control is performed when the supply voltage is a first voltage or more, and a low voltage mode where at least one of the interlocking brake control and the anti-lock brake control is performed in a limited manner when the supplied voltage is a second, lower voltage. An operation mode is changed from the usual voltage mode to the low voltage mode when it is determined that the supply voltage becomes lower than the first voltage.
Abstract:
A brake control apparatus for a vehicle includes a first calculating portion for calculating a master cylinder pressure, a first determining portion for determining whether or not the brake operation is performed, a second calculating portion for calculating a target wheel cylinder pressure, a third calculating portion for calculating a controlled pressure, a controlling portion for controlling a pressure difference control valve, a second determining portion for determining whether or not the vehicle is stopped, and a driving portion for specifying a drive pattern of a motor to a first motor drive pattern in a case where the vehicle is not stopped, the motor driving a pump for discharging a brake fluid, the driving means specifying the drive pattern to a second motor drive pattern in a case where the vehicle is stopped, the driving means driving the motor based on the motor driving pattern specified.
Abstract:
In a pump control apparatus that controls the discharge of brake fluid using the rotation of a motor, the number of windings in a low speed circuit is set such that the motor operates at a second rotation speed when the low speed circuit is connected to a power supply. A high speed circuit shares a portion of the windings of the low speed circuit so that the motor operates at a first rotation speed when a power supply voltage is supplied to an input terminal which is disposed midway in the windings of the low speed circuit. An ECU determines the load state of the motor based on a difference between the output voltage at an output terminal and the power supply voltage.
Abstract:
A method to control a hydraulic pump of a vehicle, the pump coupled to at least a power steering system and a power braking system is provided. The method comprises measuring steering and braking information using a brake sensor and a steering sensor; and adjusting output of said hydraulic pump based on measured information from said sensors.
Abstract:
A brake fluid pressure control device controls brake fluid pressures through control of fluid pressure control valves operated in accordance with control signals from, for example, a computer. Signal lines for supplying control signals to control circuits controlling coils of linear valve devices for some wheels (e.g., front-left and rear-right wheels) are connected to a brake ECU by a connector, and signal lines for supplying control signals to the control circuits controlling coils of linear valve devices for other wheels (e.g., front-right and rear-left wheels) are connected to the brake ECU by a different connector. Thus, even if one of the connectors starts operating abnormally, it is possible to supply control signals via the signal lines connected by the other connector and control linear valve devices for some of the wheels (e.g., a pair of diagonally located wheels).