摘要:
A method of operating a hybrid electric vehicle coordinates operation of an internal combustion engine, a motor, and friction brakes to mitigate a driveline lash crossing without delaying generation of negative torque. In response to a request to transition from positive torque to negative torque, the engine and motor are controlled to rapidly reduce powertrain torque to a small positive value, slowly reduce powertrain torque through the driveline lash zone, and then rapidly reduce powertrain torque to the target. To avoid delay, the friction brakes are applied in a coordinated manner to supply the negative torque during the transition.
摘要:
An electric vehicle control device is provided that ensures a required coupling capacity precision of a friction coupling element by appropriately switching a torque sharing rate during a shift transition period. The control device includes a motor, an automatic transmission, a shift controller, a frictional engagement element, a control unit and an engagement capacity control section. The frictional engagement element is disposed in a power transmission path from the motor to a driving wheel. The control unit switching delays switching a torque sharing rate of the frictional engagement element during a shift transition period until the start of the shifting procedure, and continuously switches the current gear sharing rate to a subsequent gear sharing rate in accordance with a degree of the shifting procedure when the shifting procedure starts.
摘要:
To improve the drivability of a driver while performing an output restriction. A hybrid vehicle has an output restriction control unit that releases or restores an output restriction in accordance with a predetermined operation by the driver, and a predetermined release rate or a predetermined restoration rate can be set for the release or the restoration of the output restriction.
摘要:
An electric vehicle control device is provided that ensures a required coupling capacity precision of a friction coupling element by appropriately switching a torque sharing rate during a shift transition period. The control device includes a motor, an automatic transmission, a shift controller, a frictional engagement element, a control unit and an engagement capacity control section. The frictional engagement element is disposed in a power transmission path from the motor to a driving wheel. The control unit switching delays switching a torque sharing rate of the frictional engagement element during a shift transition period until the start of the shifting procedure, and continuously switches the current gear sharing rate to a subsequent gear sharing rate in accordance with a degree of the shifting procedure when the shifting procedure starts.
摘要:
A method for operating a hybrid vehicle and a hybrid vehicle are disclosed. The hybrid vehicle includes a supercharged internal combustion engine having an overboost function and at least one electric drive. An overboost phase of the supercharger of the internal combustion engine is followed by a regeneration phase of the supercharger and a corresponding drop in torque, wherein the at least one electric drive is used to at least partially compensate for the drop in torque of the internal combustion engine during the overboost regeneration phase of the supercharger. Thus, an improved driving behavior with an extended overboost phase can be achieved.
摘要:
A control device for controlling a transmission configured such that when the speed change mechanism performs switching to a shift speed with a lower speed ratio in a negative torque prediction established state in which predicted input torque is negative, the predicted input torque being a predicted value of input torque input to the input member a predetermined determination reference time later, and being derived on the basis of variations in the input torque, special speed change control is executed in which a disengagement hydraulic pressure is lowered to cause a disengagement element to slip, and the disengagement element is maintained in a slipping state over an entire speed change process, which extends from a time point when the disengagement element starts slipping to a time point when a rotational speed is synchronized with a rotational speed of the input member.
摘要:
To improve the drivability of a driver while performing an output restriction. A hybrid vehicle has an output restriction control unit that releases or restores an output restriction in accordance with a predetermined operation by the driver, and a predetermined release rate or a predetermined restoration rate can be set for the release or the restoration of the output restriction.
摘要:
A method for operating a hybrid vehicle and a hybrid vehicle are disclosed. The hybrid vehicle includes a supercharged internal combustion engine having an overboost function and at least one electric drive. An overboost phase of the supercharger of the internal combustion engine is followed by a regeneration phase of the supercharger and a corresponding drop in torque, wherein the at least one electric drive is used to at least partially compensate for the drop in torque of the internal combustion engine during the overboost regeneration phase of the supercharger. Thus, an improved driving behavior with an extended overboost phase can be achieved.
摘要:
A control device for controlling a transmission configured such that when the speed change mechanism performs switching to a shift speed with a lower speed ratio in a negative torque prediction established state in which predicted input torque is negative, the predicted input torque being a predicted value of input torque input to the input member a predetermined determination reference time later, and being derived on the basis of variations in the input torque, special speed change control is executed in which a disengagement hydraulic pressure is lowered to cause a disengagement element to slip, and the disengagement element is maintained in a slipping state over an entire speed change process, which extends from a time point when the disengagement element starts slipping to a time point when a rotational speed is synchronized with a rotational speed of the input member.