METHOD OF MAKING TRANSPARENT CONDUCTORS ON A SUBSTRATE
    1.
    发明申请
    METHOD OF MAKING TRANSPARENT CONDUCTORS ON A SUBSTRATE 审中-公开
    在基板上制造透明导体的方法

    公开(公告)号:US20150316955A1

    公开(公告)日:2015-11-05

    申请号:US14649979

    申请日:2013-12-02

    IPC分类号: G06F1/16 G06F3/041

    摘要: A method of patterning a conductive layer to form transparent electrical conductors that does not require etching is disclosed. The method includes peeling a strippable polymer layer from a substrate coated with the conductive layer to pattern the conductive layer. In some embodiments, a resist matrix material is patterned over the conductive layer to prevent removal of the conductive layer beneath the resist matrix material. In other embodiments, a liner having a pressure sensitive adhesive surface is brought into contact with the patterned strippable polymer material to remove both the patterned strippable polymer material and the conductive layer beneath it.

    摘要翻译: 公开了一种图案化导电层以形成不需要蚀刻的透明电导体的方法。 该方法包括从涂覆有导电层的基底剥离可剥离的聚合物层,以对导电层进行图案化。 在一些实施例中,在导电层上图案化抗蚀剂基质材料,以防止在抗蚀剂基质材料下方的导电层的去除。 在其他实施例中,具有压敏粘合剂表面的衬垫与图案化的可剥离聚合物材料接触以除去图案化的可剥离聚合物材料和其下面的导电层。

    FUEL-FREE NANOWIRE MOTORS
    5.
    发明申请
    FUEL-FREE NANOWIRE MOTORS 有权
    无油NANOWIRE电机

    公开(公告)号:US20130241344A1

    公开(公告)日:2013-09-19

    申请号:US13876470

    申请日:2011-09-28

    申请人: Joseph Wang

    发明人: Joseph Wang

    摘要: Techniques and systems are disclosed for locomoting fuel-free nanomotors in a fluid. In one aspect of the disclosed technology, a system for locomoting fuel-free nanomotors can include an electrically-driven nanowire diode formed of two or more segments of different electrically conducting materials, a fluid container, and a mechanism that produces an electric field to drive the nanowire diode to locomote in the fluid. In another aspect, a system for locomoting fuel-free nanomotors can include a magnetically-propelled multi-segment nanowire motor formed of a magnetic segment and a flexible joint segment, a fluid container, and a mechanism that generates and controls a magnetic field to drive the multi-segment nanowire motor to locomote in the fluid. The disclosed fuel-free nanomotors can obviate fuel requirements and can be implemented for practical in vitro and in vivo biomedical applications.

    摘要翻译: 公开了用于在流体中移动无燃料纳米电动机的技术和系统。 在所公开的技术的一个方面,用于移动无燃料纳米电动机的系统可以包括由不同导电材料的两个或多个部分形成的电驱动纳米线二极管,流体容器和产生电场驱动的机构 纳米线二极管在液体中移动。 在另一方面,一种用于移动无燃料纳米电动机的系统可以包括由磁性段和柔性接头段形成的磁力推进的多段纳米线马达,流体容器和产生并控制磁场驱动的机构 多段纳米线马达流入液体中。 所公开的无燃料纳米电动机可以消除燃料需求并且可以实现用于实际的体外和体内生物医学应用。

    Photoresponsive Nanoparticles as Light-Driven Nanoscale Actuators
    8.
    发明申请
    Photoresponsive Nanoparticles as Light-Driven Nanoscale Actuators 失效
    光响应纳米颗粒作为光驱纳米级致动器

    公开(公告)号:US20120175529A1

    公开(公告)日:2012-07-12

    申请号:US12985924

    申请日:2011-01-06

    IPC分类号: G21G5/00 C08F126/02

    摘要: Photoresponsive shape memory nanoparticles have a layered smectic ordering and include a photoresponsive moiety selected from the group consisting of azobenzene, stilbene, and spiropyran. Multiple cycles of contraction and extension in these materials can be controlled by UV and visible light. By changing light intensity and exposure time, the magnitude of actuation can be modulated.

    摘要翻译: 光响应形状记忆纳米颗粒具有层状近晶序列,并且包括选自偶氮苯,茋和螺吡喃的光响应部分。 这些材料的多个收缩周期可以通过紫外线和可见光进行控制。 通过改变光强度和曝光时间,可以调节致动的大小。

    Photoresponsive Nanoparticles as Light-Driven Nanoscale Actuators
    10.
    发明申请
    Photoresponsive Nanoparticles as Light-Driven Nanoscale Actuators 失效
    光响应纳米颗粒作为光驱纳米级致动器

    公开(公告)号:US20130334475A1

    公开(公告)日:2013-12-19

    申请号:US13973062

    申请日:2013-08-22

    IPC分类号: G21G5/00

    摘要: Photoresponsive shape memory nanoparticles have a layered smectic ordering and include a photoresponsive moiety selected from the group consisting of azobenzene, stilbene, and spiropyran. Multiple cycles of contraction and extension in these materials can be controlled by UV and visible light. By changing light intensity and exposure time, the magnitude of actuation can be modulated.

    摘要翻译: 光响应形状记忆纳米颗粒具有层状近晶序列,并且包括选自偶氮苯,茋和螺吡喃的光响应部分。 这些材料的多个收缩周期可以通过紫外线和可见光进行控制。 通过改变光强度和曝光时间,可以调节致动的大小。