摘要:
Refractory glass-forming tools, including glass-forming molds incorporating protective metal nitride surface coatings, with optional alumina barrier layers disposed between the mold bodies and coating for high-temperature nitride coating stability, offering particular advantages for the manufacture by direct molding of optically finished glass products such as information display cover glasses from refractory alkali aluminosilicate glasses at molding temperatures up to and above 800° C.
摘要:
Refractory glass-forming tools, including glass-forming molds incorporating protective metal nitride surface coatings, with optional alumina barrier layers disposed between the mold bodies and coating for high-temperature nitride coating stability, offering particular advantages for the manufacture by direct molding of optically finished glass products such as information display cover glasses from refractory alkali aluminosilicate glasses at molding temperatures up to and above 800° C.
摘要:
A glass-shaping mold includes a steel base member, and a crystallized, machined layer, an intermediate layer and a mold-releasing layer which are sequentially formed on the base member. The machined layer is a layer of nickel alloy containing phosphorus. The intermediate layer is a layer formed of chromium, nickel, copper or cobalt. Alternatively, the intermediate layer is a layer of an alloy layer containing at least one of these elements. The mold-releasing layer is a layer of an alloy containing iridium and rhenium.
摘要:
The invention provides: a mold for molding optical glass, the mold comprising: a mold base; and a protective film comprising one or two or more layers formed on the mold base, the outermost layer of the protective film containing one or more elements selected from the group consisting of Al, Ga, In, Tl, Ge, Sn, Pb, As, Sb, Bi, S, Se, and Te; a process for producing the mold; and a process for press-molding with the mold.
摘要:
A composite mold includes a mold base, a protective film provided on the mold base, and a water-cooling heat dissipation system disposed within the mold base. Wherein, the protective film is comprised of with a plurality of RexIry layers and a plurality of SiC layers, the RexIry layers and the SiC layers are alternatively stacked one on another, x is in the range from 0.25 to 0.55, and y is in the range from 0.45 to 0.75. Alternatively, the protective film is comprised of an RexIry layer, a catalyst layer and a carbon nanotube layer in that order, x is in the range from 0.25 to 0.55, and y is in the range from 0.45 to 0.75.
摘要翻译:复合模具包括模具基座,设置在模具基座上的保护膜,以及设置在模具基座内的水冷散热系统。 其中,所述保护膜由多个Re x Al x Y层和多个SiC层构成,所述Re x x Ir SUB层和SiC层交替堆叠在一起,x在0.25至0.55的范围内,y在0.45至0.75的范围内。 或者,保护膜依次由ReIr钇层,催化剂层和碳纳米管层组成,x在0.25至0.55的范围内 ,y在0.45〜0.75的范围内。
摘要:
A core insert (1) for glass molding machine includes a substrate (10) and a plurality of complex films (12) deposited on a surface of the substrate (10). Each complex film (12) is composed of a noble metal layer (120), an insulating metal oxide layer (122), and a hard film (124). The insulating metal oxide layer is formed on a surface of the noble metal layer, and the hard film is formed on a surface of the insulating metal oxide layer. A vacuum sputtering apparatus 2 for making a core insert includes a vacuum chamber 4, a plurality of target frameworks for holding a plurality of targets, and a substrate framework for holding substrates. The target frameworks and the substrate framework are installed in the vacuum chamber, and the substrate framework has a rotation mechanism and a revolution mechanism associated therewith.
摘要:
A method of press-molding glass optical elements by press-molding glass, having a high melting point, at a temperature of 650.degree. C. and higher using a die for press-molding glass optical elements which includes a base material having a heat resistance and sufficient strength to withstand press-molding of optical glass elements, a cutting layer on the base material, and a surface protective layer on the cutting layer. The cutting layer is formed of an alloy film containing P and one metal selected from the group Ni, Co, and Fe, and one metal from the group Si, Ti, Cu, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, Os, and Ir, or an alloy film containing Cu and 20 to 80 atom % of one metal selected from the group Ni, Co, Fe, Si, Ti, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, Os, and Ir, or an alloy film containing Si and 20 to 80 atom % of one metal selected from the group Ni, Co, Fe, Cu, Ti, Zr, Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, Re, Os, and Ir. The surface protective layer is formed of an alloy film of at least one metal selected from the group Pt, Pd, Ir, Rh, Os, Ru, Re, W, and Ta.
摘要:
Precision glass molds are described, which are formed by coating a mold made from high purity, fme grain sized graphite, with a coating including titanium. In various implementations, the titanium coating is overcoated with yttria (Y2O3) to provide a high precision glass mold of superior performance character. The resultant glass molds can be used to form glass articles having a highly smooth finish, for high precision applications such as consumer electronic device applications, medical instruments, and optical devices. The use of high purity, fme grain size graphite allows molds to be machined at low cost, thereby eliminating the need to fabricate a metal mold that must be coated with multiple layers including metal diffusion barrier layers to meet operational requirements for such precision applications.
摘要:
A ta-C thin film (1A) is formed by laminating a first unit structure (11) and a second unit structure (12) in this order on a base material (10). The first unit structure (11) has mutually different amounts of sp3 bonding in a first layer (11a) and a second layer (11b), and has mutually different amounts of sp3 bonding in the second layer (11b) and a third layer (11c). The second unit structure (12) has mutually different amounts of sp3 bonding in a first layer (12a) and a second layer (12b), and has mutually different amounts of sp3 bonding in the second layer (12b) and a third layer (12c).
摘要:
The invention provides coatings to achieve the best accommodation of chemical, physical, and mechanical properties desired in high performance and reliable glass molding and forming tools. The substrate material can be any ordinary die or tool material such as cast iron, stainless steel, platinum, tungsten carbide and silicon. A simple coating architecture consisting of a titanium adhesion layer and a Ni—Al—N or Ti—B—C—N working layer is provided. A NiAl working layer can meet the requirements of wear resistance in which abrasive and/or erosive wear is relatively low, while a Ti—B—C—N working layer is sufficient for processes operating at relatively low temperature or in vacuum or a protective environment. The coating architectures, from the coating/substrate interface to the outer most surface of the coating include an inner adhesion layer, an outer working layer and, optionally, one or more functionally graded material layers. The invention also provides methods of making these coatings.