摘要:
The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).
摘要:
The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).
摘要:
The present invention features a chemoselective ligation reaction that can be carried out under physiological conditions. In general, the invention involves condensation of a specifically engineered phosphine, which can provide for formation of an amide bond between the two reactive partners resulting in a final product comprising a phosphine moiety, or which can be engineered to comprise a cleavable linker so that a substituent of the phosphine is transferred to the azide, releasing an oxidized phosphine byproduct and producing a native amide bond in the final product. The selectivity of the reaction and its compatibility with aqueous environments provides for its application in vivo (e.g., on the cell surface or intracellularly) and in vitro (e.g., synthesis of peptides and other polymers, production of modified (e.g., labeled) amino acids).
摘要:
The invention is directed to methods and compositions for chemical ligation of components comprising a first component having a carboxythioester, and preferable an null-carboxythioester, moiety and a second component having an N-substituted, and preferably an Nnull-substituted, 2 or 3 carbon chain alkyl or aryl thiol to give a ligation product having an N-substituted amide bond at the ligation site. The reactants of the invention are chemoselective, and the alkyl or aryl thiol moiety is removable from the ligation product. Removal of the alkyl or aryl thiol gives a native amide bond at the ligation site. The methods and compositions of the invention are particularly useful for ligation of peptides and polypeptides. The ligation system of the invention is applicable to a wide variety of molecules, and thus can be exploited to generate peptides, polypeptides and other amino acid containing polymers having a native amide bond at the ligation site.
摘要:
Thioester and selenoester generators, thioester and selenoester compounds, and related methods for their production are provided. The subject thioester and selenoester generators include an amino acid synthon having an N-terminal group joined to a C-terminal group through an organic backbone comprising one or more carbons. The organic backbone contains a carbon having a side chain anchored to a support through a nucleophile-stable linker and is lacking reactive functional groups. The organic backbone may include a target molecule of interest, such as an amino acid, peptide, polypeptide or other organic compound of interest, and/or the N- and/or C-termini can be elaborated using a variety of synthesis approaches to provide a target molecule of interest. The compounds and methods find a wide variety of uses, including use in thioester- or selenoester-based chemical ligation techniques.
摘要:
The invention is directed to nucleophile-stable thioester generating compounds comprising an orthothioloester or a carboxyester thiol, methods of production and use. The compounds and methods have wide applicability in organic synthesis, including the generation of peptide-, polypeptide- and other polymer-thioesters. The invention is particularly useful for generating activated-thioesters from precursors that are made under conditions in which strong nucleophiles are employed, such as peptides or polypeptides made using Fmoc SPPS, as well as multi-step ligation or conjugation schemes that require (or benefit from the use of) compatible selective approaches for directing a specific ligation or conjugation reaction of interest.
摘要:
A dosing form for at least one solid reagent for use in conventional organic and inorganic synthesis, in parallel synthesis, and in split and mix synthesis in combinatorial chemistry is provided as compressed tablets each containing the same predetermined amount of said at least one reagent embedded in a polymer matrix comprising beads of a polymer insoluble in the solvents for the intended synthesis, which tablets are capable of disintegrating in said solvent for release of the at least one reagent and disperse the matrix as polymer beads into the solvent. The polymer beads forming the matrix and the reagents of the dosing form can easily be removed by filtration in order to separate these from a formed soluble product. In a method for producing the dosing form, beads of one or more polymers are mixed with the reagents and compressed into tablets after pre-treatment with an aprotic organic solvent.
摘要:
PROCESS FOR THE PREPARATION OF A PEPTIDE BY REACTING AN ALIPHATIC OR AROMATIC CRBOXYLIC ACID WITH AN ALIPHATIC OR AROMATIC AMINE IN AN ORGANIC SOLVENT IN THE PRESENCE OF AN ORGANOMETALLIC COMPOUND OF MERCURY AND AN AROMATIC DISULFIDE WHICH HAS A LOWER ALKYL, HALOGEN, PHENYL OR NITRO-SUBSTITUTED PHENYL GROUP AS A SUBSTITUENT ON THE SULFUR.
摘要:
The present invention relates to a novel acylating agent, a method for its preparation, and a method of using it for acylating one or more amino groups of an amino acid, a peptide, or a protein. The novel acylating agent may be a compound which comprises a structural element —HN—(CH2)2-(O—((CH2)2)k-O—(CH2)n-CO—, wherein k is an integer in the range of 1-10, and n is an integer in the range of 1-2, being esterified at its —CO-end to the hydroxy group of 3,5-dichloro-2-hydroxy-benzenesulfonic acid (3,5-DC-2-HBSA). This novel acylating agent has an improved stability. Using this agent the acylation process is improved as regards robustness, as well as improving yield and overall production economy. The novel acylating agent is useful for acylating pharmaceutical peptides and proteins such as GLP-1, insulin, pYY, and amylin. The invention also relates to a number of novel GLP-1 precursor peptides and derivatives in which the two N-terminal amino acids have been deleted.
摘要:
The present invention relates to a liquid (or solution)-phase manufacturing process for preparing the decapeptide Degarelix, its protected precursor, and other useful intermediates. The invention further relates to polypeptides useful in the solution-phase manufacturing process and to the purification of Degarelix itself. Degarelix can be obtained by subjecting a Degarelix precursor according to formula II: (P1)AA1-AA2-AA3-AA4(P4)-AA5-AA6(P6)-AA7-AA8(P8)-AA9-AA10-NH2 (II) or a salt or solvate thereof, to a treatment with a cleaving agent in an organic solvent, wherein P1 is an amino protecting groups; preferably acetyl; P4 is hydrogen or a hydroxyl protecting group, preferably a hydroxyl protecting group; P6 is hydrogen or an amino protecting groups; preferably an amino protecting groups; and P8 is an amino protecting group.