摘要:
The present invention provides a recombinant foot and mouth disease virus (FMDV) capsid precursor protein comprising a modified VP1 protein and optionally further comprising a modified VP4 protein. The invention further relates to an isolated nucleic acid molecule and an expression vector comprising the nucleic acid molecule for recombinant expression of the modified capsid precursor protein. In further aspects, the invention relates to a virus-like particle (VLP) obtained from the modified capsid precursor protein and a vaccine for use in the protection of a subject against an infection with FMDV produced from the VLP.
摘要:
We have generated novel molecularly marked FMDV A24LL3DYR and A24LL3BPVKV3DYR vaccine candidates. The mutant viruses contain a deletion of the leader coding region (LL) rendering the virus attenuated in vivo and negative antigenic markers introduced in one or both of the viral non-structural 3Dpol and 3B proteins. The vaccine platform includes unique restriction endonuclease sites for easy swapping of capsid proteins for different FMDV subtypes and serotypes. The mutant viruses produced no signs of FMD and no shedding of virulent virus in cattle. No clinical signs of disease or fever were observed and no transmission to in-contact animals was detected in pigs inoculated with live A24LL3DYR. Cattle immunized with chemically inactivated vaccine candidates showed an efficacy comparable to a polyvalent commercial FMDV vaccine. These vaccine candidates used in conjunction with a cELISA provide a suitable target for DIVA companion tests.
摘要:
The present invention encompasses FMDV vaccines or compositions. The vaccine or composition may be a vaccine or composition containing FMDV antigens. The invention also encompasses recombinant vectors encoding and expressing FMDV antigens, epitopes or immunogens which can be used to protect animals, in particular ovines, bovines, caprines, or swines, against FMDV. The invention further encompasses methods of making or producing antigenic polypeptides or antigens.
摘要:
The invention is directed to an adenoviral vector comprising at least one nucleic acid sequence encoding an aphthovirus antigen and/or a cytokine operably linked to a promoter. The adenoviral vector is replication-deficient and requires at most complementation of both the E1 region and the E4 region of the adenoviral genome for propagation. The invention also is directed to a method of inducing an immune response in a mammal comprising administering to the mammal a composition comprising the aforementioned adenoviral vector.
摘要:
The present disclosure belongs to the technical field of biological products for veterinary medicine, and specifically relates to a recombinant foot-and-mouth disease virus (FMDV) with a reduced immunosuppressive activity, a preparation method and use thereof, and a recombinant vaccine strain. According to the present disclosure, it is firstly discovered that FMDV 3B protein has an immunosuppressive function, and key sites for exerting the immunosuppressive function are found. A recombinant FMDV vaccine strain with a lost immunosuppressive function in FMDV 3B protein is constructed by introducing amino acid mutations into three repeated copies of FMDV 3B protein.
摘要:
We have generated novel molecularly marked FMDV A24LL3DYR and A24LL3BPVKV3DYR vaccine candidates. The mutant viruses contain a deletion of the leader coding region (LL) rendering the virus attenuated in vivo and negative antigenic markers introduced in one or both of the viral non-structural 3Dpol and 3B proteins. The vaccine platform includes unique restriction endonuclease sites for easy swapping of capsid proteins for different FMDV subtypes and serotypes. The mutant viruses produced no signs of FMD and no shedding of virulent virus in cattle. No clinical signs of disease or fever were observed and no transmission to in-contact animals was detected in pigs inoculated with live A24LL3DYR. Cattle immunized with chemically inactivated vaccine candidates showed an efficacy comparable to a polyvalent commercial FMDV vaccine. These vaccine candidates used in conjunction with a cELISA provide a suitable target for DIVA companion tests.
摘要:
The present invention encompasses FMDV vaccines or compositions. The vaccine or composition may be a vaccine or composition containing FMDV antigens. The invention also encompasses recombinant vectors encoding and expressing FMDV antigens, epitopes or immunogens which can be used to protect animals, in particular ovines, bovines, caprines, or swines, against FMDV. The invention further encompasses methods of making or producing antigenic polypeptides or antigens.
摘要:
A mammalian cell co-transfect with an expression plasmid comprising T7 promoter and an open reading frame (ORF) of target antigen, and a vT7 recombinant vaccinia virus expressing T7 polymerase. The entire antigen expressing cell is used as a carrier of the target antigen for preparing a vaccine or diagnostic agent, and screening monoclonal antibodies.
摘要:
The present invention encompasses FMDV vaccines or compositions. The vaccine or composition may be a vaccine or composition containing FMDV antigens. The invention also encompasses recombinant vectors encoding and expressing FMDV antigens, epitopes or immunogens which can be used to protect animals, in particular ovines, bovines, caprines, or swines, against FMDV. The invention further encompasses methods of making or producing antigenic polypeptides or antigens.
摘要:
We have generated novel molecularly marked FMDV A24LL3DYR and A24LL3BPVKV3DYR vaccine candidates. The mutant viruses contain a deletion of the leader coding region (LL) rendering the virus attenuated in vivo and negative antigenic markers introduced in one or both of the viral non-structural 3Dpol and 3B proteins. The vaccine platform includes unique restriction endonuclease sites for easy swapping of capsid proteins for different FMDV subtypes and serotypes. The mutant viruses produced no signs of FMD and no shedding of virulent virus in cattle. No clinical signs of disease or fever were observed and no transmission to in-contact animals was detected in pigs inoculated with live A24LL3DYR. Cattle immunized with chemically inactivated vaccine candidates showed an efficacy comparable to a polyvalent commercial FMDV vaccine. These vaccine candidates used in conjunction with a cELISA provide a suitable target for DIVA companion tests.