摘要:
A species of Burkholderia sp with no known pathogenicity to vertebrates but with pesticidal activity (e.g., plants, insects, fungi, weeds and nematodes) is provided. Also provided are natural products derived from a culture of said species and methods of controlling pests using said natural products.
摘要:
The invention features compounds (e.g., macrocyclic compounds) capable of modulating biological processes, for example through binding to a presenter protein (e.g., a member of the FKBP family, a member of the cyclophilin family, or PIN1) and a target protein such as CEP250. These compounds bind endogenous intracellular presenter proteins, such as the FKBPs or cyclophilins, and the resulting binary complexes selectively bind and modulate the activity of the target protein. Formation of a tripartite complex among the presenter protein, the compound, and the target protein is driven by both protein-compound and protein-protein interactions, and both are required for modulation of target protein activity.
摘要:
A method for producing galanthamine using a plant, includes (a) performing a thermal treatment on a living plant to induce accumulation of galanthamine therein, wherein the living plant is a plant belonging to the family Amaryllidaceae; and (b) placing the living plant in a medium and performing an electrical stimulation treatment on the living plant to release the galanthamine from the living plant to the medium.
摘要:
The disclosure relates to a nucleic acid molecule isolated from a Papaver somniferum cultivar that produces the opiate alkaloid noscapine which comprises 10 genes involved in the biosynthesis of opiate alkaloids.
摘要:
This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes polyketides and 3-hydroxypropionic acid.
摘要:
The present invention is based on the discovery that certain fermentation products of the marine actinomycete strains CNB392 and CNB476 are effective inhibitors of hyperproliferative mammalian cells. The CNB392 and CNB476 strains lie within the family Micromonosporaceae, and the generic epithet Salinospora has been proposed for this obligate marine group. The reaction products produced by this strain are classified as salinosporamides, and are particularly advantageous in treating neoplastic disorders due to their low molecular weight, low IC50 values, high pharmaceutical potency, and selectivity for cancer cells over fungi.
摘要:
The present invention relates to a method of fermenting and purifying tricyclo compounds, specifically FK506 and/or FK520, and more particularly, to a method of purifying tricyclo compounds by adding a hydrophobic absorbent resin as a carrier in culturing FK506 and/or FK520 producing bacteria.
摘要:
A compound denoted by general formula (1) below; wherein n denotes an integer from 0 to 8 and wherein each X denotes either a residue denoted by general formula (2) below or an amino group and at least one X is a residue denoted by general formula (2) below; and wherein R denotes C5H11 or C7H15 is provided.
摘要翻译:由下述通式(1)表示的化合物; 其中n表示0至8的整数,并且其中每个X表示由下述通式(2)表示的残基或氨基,并且至少一个X为下述通式(2)表示的残基; 并且其中R表示C 5 H 11或C 7 H 15。
摘要:
The present invention is based on the discovery that certain fermentation products of the marine actinomycete strains CNB392 and CNB476 are effective inhibitors of hyperproliferative mammalian cells. The CNB392 and CNB476 strains lie within the family Micromonosporaceae, and the generic epithet Salinospora has been proposed for this obligate marine group. The reaction products produced by this strain are classified as salinosporamides, and are particularly advantageous in treating neoplastic disorders due to their low molecular weight, low IC50 values, high pharmaceutical potency, and selectivity for cancer cells over fungi.
摘要:
The present invention is based on the discovery that certain fermentation products of the marine actinomycete strains CNB392 and CNB476 are effective inhibitors of hyperproliferative mammalian cells. The CNB392 and CNB476 strains lie within the family Micromonosporaceae, and the generic epithet Salinospora has been proposed for this obligate marine group. The reaction products produced by this strain are classified as salinosporamides, and are particularly advantageous in treating neoplastic disorders due to their low molecular weight, low IC50 values, high pharmaceutical potency, and selectivity for cancer cells over fungi.