Abstract:
An isolation mount is provided including a frame bracket having an aperture therein. A fastener is received in the aperture. The fastener includes a threaded shaft and a cone-shaped head portion integrally formed with the threaded shaft. The cone-shaped head portion includes a narrow end and a relatively wider end with the narrow end being closer to the threaded shaft than the wider end and a tool engaging portion on the head portion. An elastomeric member is disposed between the fastener and the frame bracket. The design integrates multiple features into a single element thereby greatly improving the assembly process and cost of the isolation mount.
Abstract:
An elastomeric tie rod end isolator or an elastomeric cartridge isolator that includes an outer metal sleeve defining a generally cylindrical socket, a generally cylindrical inner metal sleeve disposed coaxially within the socket in radially spaced relationship with the outer metal sleeve, and an elastomeric isolator disposed therebetween. The elastomeric isolator is a unitary annular body formed of an elastomer material and having a radially inboard surface in contact with the inner metal sleeve and a radially outboard surface in contact with the outer metal sleeve. The unitary elastomer body has a generally conical primary load-carrying section and a generally cylindrical secondary load-limiting section, each disposed coaxially about the axis of the socket. The load-limiting section includes a snubber gap formed by an axially extending groove. The annular unitary elastomeric body may be formed of an elastomer material having a relatively low damping characteristic and a relatively soft stiffness characteristic.
Abstract:
A mount with replaceable load bearing and rebound members is provided. The mount comprises a housing that defines a first chamber and a second chamber; a load bearing member removably located in said first chamber, said load bearing member comprising a load bearing member contact portion; a rebound member removably located in said second chamber, said rebound member having a rebound member contact portion, the contact portions of the load bearing member and rebound member being in abutment when the members are removably located in the chambers; and means for coupling said load bearing member and rebound member.
Abstract:
The invention relates to an elastomeric bearing system capable of sustaining a high compressive load, thus allowing a pivot movement around an axis perpendicular to said load and adapted, in particular, to connect the blades of a helicopter rotor to a rotor hub. Such a bearing system comprises a first and a second elastomeric bearing element fixed at the opposite ends of a tie bar. Said first elastomeric bearing element comprises a rigid external housing having an internal truncated-tapered surface with its minor basis directed inwardly, a rigid internal housing having an external truncated-tapered surface with its minor basis directed inwardly, and a resilient body between said internal and external truncated-tapered surfaces. Said second elastomeric bearing element is constituted by a chevron sub-assembly, comprising two tapered elastomeric bearing elements disposed with their minor basis facing each other, both having an individual internal housing and a resilient body and sharing a common external housing with a double-taper internal surface, the internal housings being connected one another by fastening elements.
Abstract:
Method and arrangement for providing a bearing arrangement for mounting the spring suspension for a leaf-spring-supported bogie on a vehicle. The arrangement includes a bracket, a leaf-spring support and two bearing elements. The bearing elements have a number of parallel, conical, tubular supporting elements and at least one conical, tubular liner.
Abstract:
The invention relates to a sleeve (1), particularly a rod sleeve, at least consisting of a core comprising a core hub (2) that has two faces (3), and comprising a core pin (4), which extends in the direction of longitudinal axis Y and which projects over both faces of the core hub while forming two connecting journals (5). The inventive sleeve also consists of an outer sleeve (6) and of an elastic layer (7) located between the core hub (2) and the outer sleeve (6). The core hub (2) and the core pin (4) form a one-piece core system that is provided, however, in two parts with regard to the normal X to the longitudinal axis Y, whereby both core halves (A1, A2) are assembled with interference fit by means of an insertion-slot system (8). The core hub (2) between its two faces (3) undergoes a tapering with an angle change null, whereby the respective contact surfaces (9, 10) of the core hub and of the outer sleeve (6) extend in a manner that essentially corresponds the elastic layer (7). The outer sleeve (6) and the elastic layer (7) are provided in two parts with regard to the normal X to the longitudinal Y. Both sleeve halves (B1, B2) are assembled with interference fit by means of an insertion-slot system (11), whereas both elastic layer halves (C1, C2) are placed at a distance L1 from one another.
Abstract:
A steering gear box mounting structure has a flexible support device for mounting a steering gear box to a vehicle body member and a flexible support device mounting portion for mounting the flexible support device to the steering gear box. The flexible support device is composed of an outer sleeve, an inner sleeve and an elastic body. The outer sleeve is conically shaped in its both axial end portions and is cylindrically shaped in its center portion. The inner sleeve is partially conically shaped in its axial end portions and is cylindrically shaped in its center portion. The elastic body is interposed between the outer and inner sleeves with a hollow space left therebetween. In the flexible support device, the outer sleeve is provided with an inclined surface inclined with respect to a direction perpendicular to the axis of the outer sleeve. Hence, the outer sleeve is vertically displaced relative to the inner sleeve in accordance with loads applied to the vehicle in left-to-right directions, thus making it possible to obtain a variable toe curve. The hollow space ensures a certain linear range.
Abstract:
Laminated elastomer bearings of the type comprising alternating bonded layers of resilient material and non-extensible material are improved by forming at least some of the resilient layers of at least two different stocks having different elasticity characteristics.
Abstract:
A friction-based, motion damping assembly for a chairlift or the like is disclosed in which the damping assembly is mounted between a hub provided on a cable grip assembly and the chairlift hanger arm. The improved damping assembly is formed as a sleeve mounted to the hub of the cable grip with concentric rubber block members mounted around the sleeve. The hanger arm is formed with a collar having tapered surfaces, and an axially displaceable nut on the hub is used to wedge the rubber blocks into radial compressive engagement of the sleeve to generate the necessary compression of the sleeve about the hub for frictional damping.