Abstract:
The disclosure relates to a field emission cathode. The field emission cathode includes a microchannel plate, a cathode electrode and a number of cathode emitters. The microchannel plate is an insulative plate and includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The cathode electrode is located on the first surface. The number of cathode emitters are filled in the number of holes and electrically connected with the cathode electrode.
Abstract:
Micro-fabricated charge-emission devices comprise an electrically conductive gate electrode with an aperture, an electrically conductive base electrode, a charge-emitting microstructure extending from a surface in electrical contact with the base electrode and terminating near the aperture of the gate electrode, and a dielectric layer stack disposed between the base electrode and the gate electrode. The dielectric layer stack comprises a first dielectric layer and a second dielectric layer. The first dielectric layer is disposed between the second dielectric layer and the base electrode. The first dielectric layer is of a different selectively etchable dielectric material than the second dielectric layer. The dielectric layer stack h formed therein a cavity within which the charge-emitting emitting microstructure is disposed. The cavity has a corrugated wall shaped by the first dielectric layer undercutting the second dielectric layer. The corrugated wall surrounds the charge-emitting microstructure disposed within the cavity.
Abstract:
The disclosure relates to a field emission cathode. The field emission cathode includes a microchannel plate, a cathode electrode and a number of cathode emitters. The microchannel plate is an insulative plate and includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The cathode electrode is located on the first surface. The number of cathode emitters are filled in the number of holes and electrically connected with the cathode electrode.
Abstract:
An electron emission device includes a cathode electrode; a mesh-shaped gate electrode spaced apart from the cathode electrode; a plurality of gate spacers between the cathode electrode and the gate electrode; and a plurality of electron emission sources between the cathode electrode and the gate electrode, and alternating with the plurality of gate spacers.
Abstract:
The field emission cathode device includes an insulating substrate with a number of cathodes mounted thereon. A number of field emission units are mounted on the cathodes. A dielectric layer is disposed on the insulating substrate and defines a number of voids corresponding to the field emission units. The dielectric layer has an upper and lower section and disposed on the insulating substrate. The dielectric layer defining a plurality of voids corresponding to the field emission units. A number of grids disposed between the upper and lower sections, and wherein each grid are secured by the upper and lower sections of the dielectric layer.
Abstract:
The disclosure relates to a method for making field emission cathode. A microchannel plate is provided. The microchannel plate includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The plurality of holes are filled with a carbon nanotube slurry. The carbon nanotube slurry is adhered on inner walls of the plurality of holes. The carbon nanotube slurry in the plurality of holes is solidified.
Abstract:
The disclosure relates to a method for making field emission cathode. A microchannel plate is provided. The microchannel plate includes a first surface and a second surface opposite to the first surface. The microchannel plate defines a number of holes extending through the microchannel plate from the first surface to the second surface. The plurality of holes are filled with a carbon nanotube slurry. The carbon nanotube slurry is adhered on inner walls of the plurality of holes. The carbon nanotube slurry in the plurality of holes is solidified.
Abstract:
An electron emission device includes a cathode electrode; a mesh-shaped gate electrode spaced apart from the cathode electrode; a plurality of gate spacers between the cathode electrode and the gate electrode; and a plurality of electron emission sources between the cathode electrode and the gate electrode, and alternating with the plurality of gate spacers.