Abstract:
A voltage controlled oscillator of a phase locked loop circuit having digitally controlled gain compensation. The digital control circuitry provides binary logic input to the voltage controlled oscillator for a digitally controlled variable resistance circuit, a digitally controlled variable current transconductor circuit, or differential transistor pairs having mirrored circuitry for adjusting the V-I gain. The latter configuration requires the voltage controlled oscillator to incorporate a source-coupled differential pair which is driven by a low pass filter capacitor output voltage, and connected to load transistors; a current source and a current mirror for generating a tail current; individual banks of transistors to mirror the load transistor currents; a digital-to-analog converter with control lines outputted there from, the digital-to-analog converter used to increase the amount of current allowed to flow to the transconductor output, the current being digitally increased and decreased corresponding to an amount of current pulled from the current source, and mirroring the current through at least one transistor mirror circuit.
Abstract:
A voltage-controlled oscillator is provided having a semiconductor integrated circuit and a piezoelectric resonator. A variable-capacitance diode may be connected in series with the piezoelectric resonator. The variable-capacitance diode may be further mounted a land of a lead frame. The piezoelectric resonator, variable-capacitance diode and lead frame may be resin molded into a single unit. In operation, a signal may be applied to a node located between the variable-capacitance diode and the DC-cutting capacitor.
Abstract:
Systems for controlling the frequency of the output signal of a controllable oscillator in a frequency synthesizer are provided. One such system comprises a controllable oscillator and a frequency control circuit. The controllable oscillator is configured to generate an output signal that has a predefined frequency. The controllable oscillator is also configured with a plurality of operational states that are controlled by the frequency control circuit. Each operational state of the controllable oscillator defines a distinct frequency for the output signal of the controllable oscillator. The frequency control circuit receives the output signal of the controllable oscillator and determines the distinct frequency for the output signal that best approximates the predefined frequency. The frequency control circuit may also provide a control signal to the controllable oscillator that is configured to change the controllable oscillator to the operational state corresponding to the distinct frequency that best approximates the predefined frequency.
Abstract:
The invention proposes a device for high-frequency and/or radio-frequency tuning comprising within one IC-package a first variable capacitor (C1) and at least one second capacitor (C2), each of the at least one second capacitor (C2) being fixed or variable respectively, at least one signal path connected to the first variable capacitor (C1) and providing at least one input and one output port (rf-port1, rf-port2) and at least one controllable switching means (SC2) for individually connecting and disconnecting at least one of the at least one second capacitor (C2) into the signal path or from the signal path, in particular in parallel to the first variable capacitor (C1).
Abstract:
A tuning circuit for a reference oscillator (200) including voltage variable capacitors (222, 224) in a back to back configuration and providing a control terminal for voltage controlled tuning of the reference oscillator (200). Also included in the tuning circuit is a modulation bias circuit for modulating the reference oscillator (200).
Abstract:
A resonator (50) is connected in circuit with a negative resistance element (Q3,Q4) for producing oscillation at a resonant frequency of the resonator (50). A digital phase shifter (58) is incorporated into the resonant frequency in accordance with an applied digital signal. The resonator (50) can be connected in series with the negative resistance element (Q3), in which case the phase shifter (58) is connected as either a short-circuit or an open-circuit transmission line. Alternatively, the resonator (50) can be connected in parallel with the negative resistance element (Q4) in a feedback loop. An analog phase shifter (84) can also be provided in the resonator (50') for continuously variably setting the resonant frequency over the tuning increments of the digital phase shifter (58).
Abstract:
A phase modulator includes a digital frequency word generator, an adder and a register arranged to generate recurrent digital sawtooth signals at a carrier rate. A second digital adder is coupled to receive the sawtooth signals and also receives digital information signals. The adder produces recurrent digital sawtooth signals phase-modulated by the information signal. A pair of adders receive the digital sawtooth signals and mutually sign-reversed digital information signals to produce a pair of oppositely phase-modulated constant-amplitude signals in a pair of channels. A sine memory is addressed by the phase-modulated digital sawtooth signals to produce phase-modulated sinusoidal-representative digital signals. The digital signals are then converted to analog signals. Since the two channels contain signals which are phase-modulated but not amplitude-modulated, the signals may be amplified by nonlinear amplifiers. An adder is coupled to the outputs of the two channels to sum together the two phase-modulated signals to produce an amplitude-modulated signal. Combinations of amplitude and phase modulation may be generated by a combined structure.
Abstract:
Voltage-controlled oscillation is described. In an apparatus therefor, an inductor has a tap and has or is coupled to a positive-side output node and a negative side output node. The tap is coupled to receive a first current. A coarse grain capacitor array is coupled to the positive-side output node and the negative side output node and is coupled to respectively receive select signals. A varactor is coupled to the positive-side output node and the negative side output node and is coupled to receive a control voltage. The varactor includes MuGFETs. A transconductance cell is coupled to the positive-side output node and the negative side output node, and the transconductance cell has a common node. A frequency scaled resistor network is coupled to the common node and is coupled to receive the select signals for a resistance for a path for a second current.
Abstract:
An oscillator circuit includes: an arithmetic section configured to correct a first input code value and thereby generate a first code value that is within a first predetermined range, the arithmetic section being configured to correct a second input code value in correspondence with a correction amount of the first input code value and thereby generate a second code value, and the first predetermined range being narrower than a range of the first input code value; and an oscillation section configured to generate an oscillation signal having a frequency that varies at first sensitivity based on the first code value and varies at second sensitivity based on the second code value, the second sensitivity being higher than the first sensitivity.
Abstract:
Aspects of the disclosure provide a circuit. The circuit includes a signal amplifying circuit coupled with a crystal component of a natural frequency to form a crystal oscillator, and a signal generator circuit configured to generate a signal with an energy distribution about the natural frequency, and to provide the signal to the crystal oscillator to assist the crystal oscillator to begin oscillating.