Abstract:
A window membrane is permeable to electromagnetic radiation, especially soft X-rays. It comprises a film (201) and a metallic reinforcement mesh (202) attached to the film (201). A preferable way of attaching the metallic reinforcement mesh (202) to the film is to use a positive-working photosensitive glue (204) and allow the reinforcement mesh (202) to act as the exposure mask.
Abstract:
There is provided an electromagnetic wave shielding sheet which can effectively prevent an adhesive layer from being colored at the time of etching. The electromagnetic wave shielding sheet comprises a laminate of at least a transparent substrate film, an adhesive layer, and an electromagnetic wave shielding layer. The electromagnetic wave shielding layer is formed of a mesh metal foil with densely arranged openings and being transparent. The adhesive layer is substantially colorless and transparent.
Abstract:
The present invention relates to a fluoroplastic article, comprising inner and outer fluoroplastic layers and a metal meshwork, the metal meshwork is arranged between the inner and outer fluoroplastic layers, characterized by that said meshwork can be stretched and compressed in the axial direction.
Abstract:
An inseparable assembly includes a body including a ceramic matrix composite material, and a cover including a metallic wire mesh. The cover is bonded to the body so that the cover overlaps at least a portion of the body.
Abstract:
A layered cladding element for a vehicle. The layered cladding element includes a first layer (1) and a second layer (7) adjacent to the first layer (1). The first layer (1) is comprised of a fiber textile with an external surface (1′) and an internal surface (1″). The external surface (1′) has an uncovered texture for providing a predetermined view and feel. Moreover, the internal surface (1″) has the second layer (7) adjacent thereto, which is comprised of plastic.
Abstract:
An inseparable assembly includes a body including a ceramic matrix composite material, and a cover including a metallic wire mesh. The cover is bonded to the body so that the cover overlaps at least a portion of the body.
Abstract:
A laminate and insulation board containing such laminate and a method of making the board are disclosed. The products are useful for residences and light commercial buildings. Such boards possess high strength, excellent structural integrity, and excellent oxygen and water vapor barrier properties.
Abstract:
A tear resistant seal made from a recyclable multilayer structure that consists of an oriented polymer film layer a thermal bonding polymer layer on the oriented polymer layer inner surface substantially coextensive thereto, and a reinforcing scrim polymer layer also having an inner surface adjacent and substantially coextensive with the thermal bonding polymer layer. The polymer film layer and the bonding polymer layer are co-extruded layers having a chemical composition that permits recycling without separating the layers. The scrim layer also has a similar chemical composition, permitting recycling following lamination, thereby permitting the recovery of waste material during production runs by the simple recycling of the complete laminated structure.
Abstract:
A polyethylene composite is manufactured by passing an inner core of fabric mesh sandwiched between two sheets of polyethylene material through a conventional set of high-pressure rollers at room temperature. The pressure exerted by the rollers on the polyethylene material causes its fluidification, so that each polyethylene layer permeates through the open mesh of the core material, bonds to the other layer and incorporates the core fibers to form a laminate composite. The thickness of the polyethylene sheets in relation to the gap and speed of the rollers has to be judiciously selected so that the pressure applied to the material is sufficient to fluidize the polyethylene at ambient temperature. Because no heat is applied to the system, the laminate composite is rapidly cooled as it passes through the rollers and requires no additional forming or processing.
Abstract:
A reinforced ceramic fiber enclosure for muffle furnaces and the like defining a cavity therewithin includes a perforate metallic skeleton defining at least a portion of the peripheral wall of the enclosure and fibrous insulation encapsulating the skeleton with fibers of the insulation extending through the perforations of the skeleton. In some embodiments the enclosure is of rectangular cross section with base, top and side walls. The top and side walls generally extend over only a portion of the length of the enclosure, and mounting and support flanges are desirably provided on at least the front end of the skeleton. To make the enclosure, the skeleton is supported on the exterior of a vacuum mold in spaced relationship thereto, and the mold and skeleton are immersed in slurry of ceramic fibers and a bonding agent therefor. The vacuum drawn through the mold causes the fibers and bonding agent to deposit on the mold and encapsulate the skeleton with fibers extending through the perforations of the skeleton.