Abstract:
The present invention relates to a stabilized starch obtained by reacting under alkaline conditions a base starch having a protein content of less than 0.4% w/w with a reactant capable of forming active chlorine, wherein the reactant is used in an amount sufficient to provide between 4000 and 8200 ppm of active chlorine during the stabilization reaction.
Abstract:
Provided herein are methods for producing a mung bean protein isolate having high functionality for a broad range of food applications. In some embodiments, the methods for producing the isolate comprise one or more steps selected from: (a) extracting one or more mung bean proteins from a mung bean protein source in an aqueous solution, for example, at a pH between about 6.5-10.0; (b) purifying protein from the extract using at least one of two methods: (i) precipitating protein from the extract at a pH near the isoelectric point of a globulin-rich fraction, for example a pH between about 5.0-6.0; and/or (ii) fractionating and concentrating protein from the extract using filtration such as microfiltration, ultrafiltration or ion-exchange chromatography; and (c) recovering purified protein isolate.
Abstract:
A system and method for the continuous production of brown butter involves concentrating butter while retaining solids non-fat in the butter, and continuously transferring and heating the concentrated butter to cause the solids non-fat in the butter to react in a Maillard reaction to form a brown butter product. The system may use one or more of a heating vessel, an evaporator and a reaction vessel to form the brown butter in the continuous process. A brown butter product derived from butter includes reacted solids non-fat particulates from a Maillard reaction suspended by nascent fat crystals nucleated about the reacted solids non-fat particulates and by large fat crystal structures joined to the nascent fat crystals.
Abstract:
A flavour composition comprising a compound according to the formula (I) or edible salts thereof, wherein R1 is an alkyl residue containing 6 to 20 carbon atoms, or an alkene residue containing from 9 to 25 carbon atoms with 1 to 6 double bonds, R1 together with the carbonyl group to which it is attached is a residue of a carboxylic acid, and NR2R3, in which R3 is H or together with R2 and the N-atom to which they are attached, a 5-membered ring, is a residue of an amino acid, in particular a proteinogenic amino acid, ornithine, gamma-aminobutyric acid or beta alanine, or a 1-amino cycloalkyl carboxylic acid.
Abstract:
A flavour composition comprising a compound according to the formula (I) or edible salts thereof, whereinR1 is alkyl residue containing 6 to 20 carbon atoms, or an alkene residue containing from 9 to 25 carbon atoms with 1 to 6 double bonds, R1 together with the carbonyl to which it is attached is a residue carboxylic acid, and NR2R3, in which R2 is H or together with R2 and the N-atom to which they are attached, a 5-membered ring, is a residue of an amino acid, in particular proteinogenic amino acid, ornithine, gamma-aminobutyric acid or beta alanine, or a 1-amino cycloalkyl carboxylic acid.
Abstract:
A flavour composition comprising a compound according to the formula (1) or edible salts thereof, wherein R1 is an alkyl residue containing 6 to 20 carbon atoms, or an alkene residue containing from 9 to 25 carbon atoms with 1 to 6 double bonds, R1 together with the carbonyl group to which it is attached is a residue of a carboxylic acid, and NR2R3, in which R3 is H or together with R2 and the N-atom to which they are attached, a 5-membered ring, is a residue of an amino acid, in particular a proteinogenic amino acid, ornithine, gamma-aminobutyric acid or beta alanine, or a 1-amino cycloalkyl carboxylic acid.
Abstract:
A multilayer microencapsulated lactic bacteria and bifidobacteria, preferably bacteria with probiotic activity, and the use thereof to prepare a food product, supplement product, medical device or pharmaceutical composition or water- and/or fruit-based beverage are described. A process for preparing multilayer microencapsulated lactic bacteria and bifidobacteria, preferably bacteria with probiotic activity is described. A food product is described selected from water, water- and/or fruit-based beverages, milk, fresh whole milk, partially skimmed milk, powdered milk, cheese, fresh cheese, aged cheese, grated cheese, butter, margarine, yogurt, cream, milk- and chocolate-based custards, custards for sweets, jams and oily suspensions having bacteria, preferably multilayer microencapsulated lactic bacteria and bifidobacteria with probiotic activity.
Abstract:
A system and method for the continuous production of brown butter involves concentrating butter while retaining solids non-fat in the butter, and continuously transferring and heating the concentrated butter to cause the solids non-fat in the butter to react in a maillard reaction to form a brown butter product. The system may use one or more of a heating vessel, an evaporator and a reaction vessel to form the brown butter in the continuous process. A brown butter product derived from butter includes reacted solids non-fat particulates from a maillard reaction suspended by nascent fat crystals nucleated about the reacted solids non-fat particulates and by large fat crystal structures joined to the nascent fat crystals.
Abstract:
The present invention relates to a polypeptide having lipase activity wherein the polypeptide, which, when aligned with a polypeptide according to SEQ ID NO: 1, comprises at least one amino acid substitution resulting in Ser (S), Ala (A) or Leu (L) at position 246, Trp (W) at position 307, Leu (L) at position 345, Ile (I) at position 365, and/or Phe (F) at position 534, wherein the position is defined with reference to SEQ ID NO: 1, wherein Ala(A) at position 1 in SEQ ID NO: 1 is counted as number 1 and a method for preparing the polypeptide.The present invention further relates to a process for preparing a food product wherein a polypeptide according to the present invention is used.
Abstract:
A system and method for the continuous production of brown butter involves concentrating butter while retaining solids non-fat in the butter, and continuously transferring and heating the concentrated butter to cause the solids non-fat in the butter to react in a maillard reaction to form a brown butter product. The system may use one or more of a heating vessel, an evaporator and a reaction vessel to form the brown butter in the continuous process. A brown butter product derived from butter includes reacted solids non-fat particulates from a maillard reaction suspended by nascent fat crystals nucleated about the reacted solids non-fat particulates and by large fat crystal structures joined to the nascent fat crystals.