SYSTEMS AND METHODS FOR AUTOMATIC OBLIQUE LATERAL INTERBODY FUSION (OLIF) CORRIDOR PLANNING

    公开(公告)号:US20240341863A1

    公开(公告)日:2024-10-17

    申请号:US18672966

    申请日:2024-05-23

    摘要: A surgical navigation and planning system is disclosed. The system may include at least one processor, and a storage medium storing programming instructions. The programming instructions may cause the processor to receive patient-specific vertebrae information include at least one image which may be acquired by an X-ray. The system may perform segmentation of objects in the at least one image and automatically select a set of objects for planning an optimal trajectory to a location proximal the vertebrae level. The system may determine boundary dimensions of an interbody implant, a first entry incision location and a first path for the interbody implant from the first entry incision location to the location proximal the vertebrae level. The system may calculate a plurality of clearance distances between the boundary dimensions and the set of objects. The set of objects may include the psoas muscle, Aorta, and/or Vena Cava.

    Determination of dynamic DRRs
    3.
    发明授权

    公开(公告)号:US12118648B2

    公开(公告)日:2024-10-15

    申请号:US18309968

    申请日:2023-05-01

    申请人: Brainlab AG

    摘要: A computer implemented method for determining a two dimensional DRR referred to as dynamic DRR based on a 4D-CT, the 4D-CT describing a sequence of three dimensional medical computer tomographic images of an anatomical body part of a patient, the images being referred to as sequence CTs, the 4D-CT representing the anatomical body part at different points in time, the anatomical body part comprising at least one primary anatomical element and secondary anatomical elements, the computer implemented method comprising the following steps: acquiring the 4D-CT; acquiring a planning CT, the planning CT being a three dimensional image used for planning of a treatment of the patient, the planning CT being acquired based on at least one of the sequence CTs or independently from the 4D-CT, acquiring a three dimensional image, referred to as undynamic CT, from the 4D-CT, the undynamic CT comprising at least one first image element representing the at least one primary anatomical element and second image elements representing the secondary anatomical elements; acquiring at least one trajectory, referred to as primary trajectory, based on the 4D-CT, the at least one primary trajectory describing a path of the at least one first image element as a function of time; acquiring trajectories of the second image elements, referred to as secondary trajectories, based on the 4D-CT; for the image elements of the undynamic CT, determining trajectory similarity values based on the at least one primary trajectory and the secondary trajectories, the trajectory similarity values respectively describing a measure of similarity between a respective one of the secondary trajectories and the at least one primary trajectory; determining the dynamic DRR by using the determined trajectory similarity values, and, in case the planning CT is acquired independently from the 4D-CT, further using a transformation referred to as planning transformation from the undynamic CT to the planning CT, at least a part of image values of image elements of the dynamic DRR being determined by using the trajectory similarity values.