摘要:
Methods for forming samples of noble metal bipyramid nanocrystals having very low size and shape polydispersities from samples of mixed noble metal nanocrystals are provided. The samples include those comprising high purity, substantially monodisperse, plasmonic gold bipyramid nanocrystals. Also provided are methods of growing secondary twinned metal nanocrystals using the noble metal bipyramid nanocrystals as seed particles. Like the seed bipyramid nanocrystals from which they are grown, the secondary nanocrystals are twinned nanocrystals and may also be characterized by very low size and shape polydispersities. Secondary twinned nanocrystals grown by these methods include enlarged metal bipyramid nanocrystals and nanocrystals with anisotropic “dumbbell” shapes having a variety of tip geometries. Methods for using noble metal bipyramid nanocrystals as plasmonic heaters to heat reaction solutions via plasmonic-photothermal radiation-to-heat conversion are also provided.
摘要:
Provided is a preparation method of a coating material. The method includes: using an aluminum salt and a silicon source as precursors; and performing hydrothermal crystallization and calcination treatments successively under an action of a template agent to obtain the coating material, wherein the template agent is used to cause the coating material to form a porous spherical structure. In the embodiments of the present disclosure, the preparation process of the coating material is simple and the cost is low, and the specific surface area of the prepared coating material is large.
摘要:
Methods for forming samples of noble metal bipyramid nanocrystals having very low size and shape polydispersities from samples of mixed noble metal nanocrystals are provided. The samples include those comprising high purity, substantially monodisperse, plasmonic gold bipyramid nanocrystals. Also provided are methods of growing secondary twinned metal nanocrystals using the noble metal bipyramid nanocrystals as seed particles. Like the seed bipyramid nanocrystals from which they are grown, the secondary nanocrystals are twinned nanocrystals and may also be characterized by very low size and shape polydispersities. Secondary twinned nanocrystals grown by these methods include enlarged metal bipyramid nanocrystals and nanocrystals with anisotropic “dumbbell” shapes having a variety of tip geometries. Methods for using noble metal bipyramid nanocrystals as plasmonic heaters to heat reaction solutions via plasmonic-photothermal radiation-to-heat conversion are also provided.
摘要:
Provided is a preparation method of a coating material. The method includes: using an aluminum salt and a silicon source as precursors; and performing hydrothermal crystallization and calcination treatments successively under an action of a template agent to obtain the coating material, wherein the template agent is used to cause the coating material to form a porous spherical structure. In the embodiments of the present disclosure, the preparation process of the coating material is simple and the cost is low, and the specific surface area of the prepared coating material is large.
摘要:
A class of erbium-doped silicate crystals have a general chemical formula of (ErxYbyCezA(1-x-y-z))3RM3Si2O14, in which the range of x is 0.002 to 0.02, y is 0.005 to 0.1, and z is 0 to 0.15; A is one, two or three elements selected from Ca, Sr, or Ba; R is one or two elements selected from Nb or Ta; M is one or two elements selected from Al or Ga. Using one of such crystals as a gain medium and a diode laser at 940 nm or 980 nm as a pumping source, a 1.5 μm continuous-wave solid-state laser with high output power and high efficiency, as well as a pulse solid-state laser with high energy and narrow width can be obtained.
摘要:
A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
摘要:
A method of forming one or more protrusions on an outer surface of a polished face of a solid state material, said method including the step of applying focused inert gas ion beam local irradiation towards an outer surface of a polished facet of a solid state material in a way of protruding top surface material; wherein irradiated focused inert gas ions from said focused inert gas ion bean penetrate the outer surface of said polished facet of said solid state material; and wherein irradiated focused inert gas ions cause expansive strain within the solid state crystal lattice of the solid state material below said outer surface at a pressure so as to induce expansion of solid state crystal lattice, and form a protrusion on the outer surface of the polished face of said solid state material.
摘要:
The invention relates to a zeolitic material comprising zeolitic monocrystals, each of which has a pore system encompassing at least one micropore system and at least one macropore system, and to a method for producing a zeolitic material of said type. In said method, porous oxide particles are converted into the zeolitic material in the presence of an organic template and steam.
摘要:
Processes of forming an irreversibly loose packed structure of particulate material useful as a photonic or phononic crystal are provided. Matrix material is infilled between particles and extends above the particles to form a particulate free matrix layer. Removing the matrix layer causes deformation of or exposes the spacing between the particles. The spaces are infilled by additional matrix material that when cured produces a supported and irreversibly loose packed crystalline structure of particles producing differing bandgaps and transmissive properties relative to the original structure. The processes provided allow for economical tuning of the transmissive properties of photonic or phononic crystals.
摘要:
Embodiments of the invention generally provide compositions of crystalline zeolite materials with tailored crystal habits and the methods for forming such crystalline zeolite materials. The methods for forming the crystalline zeolite materials include binding one or more zeolite growth modifiers (ZGMs) to the surface of a zeolite crystal, which results in the modification of crystal growth rates along different crystallographic directions, leading to the formation of zeolites having a tailored crystal habit. The improved properties enabled by the tailored crystal habit include a minimized crystal thickness, a shortened internal diffusion pathlength, and a greater step density as compared to a zeolite having the native crystal habit prepared by traditional processes. The tailored crystal habit provides the crystalline zeolite materials with an aspect ratio of about 4 or greater and crystal surfaces having a step density of about 25 steps/μm2 or greater.