Abstract:
In a first aspect, the present invention relates to a method for encapsulating a sensing and/or actuator device (100), comprising providing a sensing and/or actuator device (100) having a demarcation structure (400) thereon, the sensing and/or actuator device (100) comprising at least a substrate (200) and a sensing and/or actuator element (310) on the substrate (200), the demarcation structure (400) contacting the substrate (200) and defining an enclosed area (450) of the substrate (200), the enclosed area (450) comprising at least the sensing and/or actuator element (310). The method also comprises providing an encapsulation material (500) outside the enclosed area (450), such that the sensing and/or actuator element (310) is left uncovered by the encapsulation material (500). The demarcation structure (400) further comprises a capping structure (420) overlaying the sensing and/or actuator element (310).
Abstract:
Verfahren zum Herstellen eines mikromechanischen Sensors (100), aufweisend die Schritte: Bereitstellen eines MEMS-Wafers (10) mit einem MEMS-Substrat (1), wobei im MEMS-Substrat (1) in einem Membranbereich (3a) eine definierte Anzahl von Ätzgräben ausgebildet wird, wobei der Membranbereich in einer ersten Siliziumschicht (3), die definiert beabstandet vom MEMS-Substrat (1) angeordnet ist, ausgebildet wird; Bereitstellen eines Kappenwafers (20); Bonden des MEMS-Wafers (10) mit dem Kappenwafer (20); und Ausbilden eines Medienzugangs (6) zum Membranbereich (3a) durch Aufschleifen des MEMS-Substrats (1).
Abstract:
A microelectromechanical systems (MEMS) accelerometer is described. The MEMS accelerometer may comprise a proof mass configured to sense accelerations in a direction parallel the plane of the proof mass, and a plurality of compensation structures. The proof mass may be connected to one or more anchors through springs. The compensation structures may be coupled to the substrate of the MEMS accelerometer through a rigid connection to respective anchors. A compensation structure may comprise at least one compensation electrode forming one or more lateral compensation capacitors. The compensation capacitor(s) may be configured to sense displacement of the anchor to which the compensation structures is connected.
Abstract:
The application describes MEMS transducers and associated methods of fabrication. The MEMS transducer has a flexible membrane with a vent structure comprising a moveable portion which opens in response to a differential pressure across the membrane to provide a flow path through the membrane. At least one edge of the moveable portion comprises one or more protrusions and/or recesses in the plane of the moveable portion.
Abstract:
Ein MEMS-Wandler zum Interagieren mit einem Volumenstrom eines Fluids umfasst eine Substrat, das eine Kavität aufweist und einen elektromechanischen Wandler, der in der Kavität mit dem Substrat verbunden ist und ein sich entlang einer lateralen Beweg ungsrichtung verformbares Element aufweist, wobei eine Verformung des verformbaren Elements entlang der lateralen Bewegungsrichtung und der Volumenstrom des Fluids kausal zusammenhängen.
Abstract:
A microfluidic device includes first and second outer layers each having one or more microfluidic formations and an intermediate layer bonded between the first and second outer layers; in which the glass transition temperature of the first outer layer is higher than the glass transition temperature of the second outer layer.
Abstract:
Es wird ein Schichtmaterial vorgeschlagen, das für die Realisierung von freitragenden Strukturelementen (31) mit Elektrode (7) im Schichtaufbau eines MEMS-Bauelements (102) besonders gut geeignet ist. Erfindungsgemäß soll das freitragende Strukturelement (31) zumindest teilweise aus einer Siliziumcarbonitrid (Si 1-x-y C x N y )-basierten Schicht bestehen.
Abstract:
A method for manufacturing a fully wafer-level-packaged MEMS microphone and a microphone manufactured with the same are provided, the method comprises: separately manufacturing a first packaging wafer, an MEMS microphone wafer and a second packaging wafer; performing wafer-to-wafer bonding for the three wafers to form a plurality of fully wafer-level-packaged MEMS microphone units; singulating the fully wafer-level-packaged MEMS microphone units to form a plurality of fully wafer-level-packaged MEMS microphones, which are fully packaged at wafer level and do not need any further process after die singulation. The method can improve cost-effectiveness, performance consistency, manufacturability, quality, scaling capability of the packaged MEMS microphone.
Abstract:
A PCB speaker and a method for micromachining the speaker diaphragm on PCB substrate, the method for micromachining the speaker diaphragm on PCB substrate comprises: providing metal paths and at least one through hole on the PCB substrate (S110); providing a patterned sacrificial layer on the PCB substrate, the sacrificial layer covering all the through holes on the PCB substrate (S120); providing a diaphragm layer on the sacrificial layer through depositing, mounting or laminating, the diaphragm layer covering the sacrificial layer and electrically connected with the metal paths on the PCB substrate, thereby forming a diaphragm layer (S130); and releasing the sacrificial layer and the diaphragm layer remains (S140).
Abstract:
A silicon speaker comprising an MEMS acoustoelectric chip and a PCB substrate (3), wherein the MEMS acoustoelectric chip comprises a corrugated diaphragm (1) on a silicon substrate (2); and one side surface of the MEMS acoustoelectric chip is metalized, and the metalized side surface (6) of the MEMS acoustoelectric chip is connected with the PCB substrate. The corrugated diaphragm is electrically conductive and interconnected with metal paths (5) on MEMS acoustoelectric chip, which is led out to a first PCB metal path as one electrode. A second PCB metal path below the MEMS chip forms another electrode of the electrostatic actuator.