摘要:
A microelectronic system including hydrogen barriers and copper pillars for wafer level packaging and method of fabricating the same are provided. Generally, the method includes: forming an insulating hydrogen barrier over a surface of a first substrate; exposing at least a portion of an electrical contact to a component in the first substrate by removing a portion of the insulating hydrogen barrier, the component including a material susceptible to degradation by hydrogen; forming a conducting hydrogen barrier over at least the exposed portion of the electrical contact; and forming a copper pillar over the conducting hydrogen barrier. In one embodiment, the material susceptible to degradation is lead zirconate titanate (PZT) and the microelectronic systems device is a ferroelectric random access memory including a ferroelectric capacitor with a PZT ferroelectric layer. Other embodiments are also disclosed.
摘要:
Complementary metal oxide semiconductor (CMOS) ultrasonic transducers (CUTs) and methods for forming CUTs are described. The CUTs may include monolithically integrated ultrasonic transducers and integrated circuits for operating in connection with the transducers. The CUTs may be used in ultrasound devices such as ultrasound imaging devices and/or high intensity focused ultrasound (HIFU) devices.
摘要:
A method for forming through substrate vias (TSVs) in a non-conducting, glass substrate is disclosed. The method involves patterning a silicon template substrate with a plurality of lands and spaces, bonding a slab or wafer of glass to the template substrate, and melting the glass so that it flows into the spaces formed in the template substrate. The template substrate may then be removed to leave a plurality of TSVs in the glass slab or wafer.
摘要:
A packaged microphone has a base and a lid that at least in part form a package having a plurality of exterior sides and an interior chamber. The packaged microphone also has a flexible substrate having a first portion within the interior chamber, and a second portion, extending from the interior chamber, having at least two sets of pads. A MEMS microphone die is mounted to the first portion of the flexible substrate, and each set of pads is in electrical communication with the microphone die. One set of pads is on a first exterior side of the package, and a second set of pads is on a second exterior side of the package.
摘要:
A MEMS micro-mirror assembly (250, 300, 270, 400) comprising, a MEMS device (240) which comprises a MEMS die (241) and a magnet (231); a flexible PCB board (205) to which the MEMS device (240) is mechanically, and electrically, connected; wherein the flexible PCB board (205) further comprises a first extension portion (205b) which comprises a least one electrical contact (259a,b) which is useable to electrically connect the MEMS micro-mirro rassembly (250, 300, 270, 400) to another electrical component). There is further provided a projection system comprising such a MEMS micro-mirror assembly (250, 300, 270, 400).
摘要:
A capacitive micromachined ultrasonic transducer (CMUT) device 100 includes at least one CMUT cell 100a including a first substrate 101 of a single crystal material having a top side including a patterned dielectric layer thereon including a thick 106 and a thin 107 dielectric region, and a through- substrate via (TSV) 111 extending a full thickness of the first substrate. The TSV is formed of the single crystal material, is electrically isolated by isolation regions 131 in the single crystal material, and is positioned under a top side contact area 102a of the first substrate. A membrane layer 120b is bonded to the thick dielectric region and over the thin dielectric region to provide a movable membrane over a microelectromechanical system (MEMS) cavity 114. A metal layer 161 is over the top side substrate contact area and over the movable membrane including coupling of the top side substrate contact area to the movable membrane.
摘要:
A packaged capacitive MEMS sensor device 100 includes at least one capacitive MEMS sensor element with at least one capacitive MEMS sensor cell 100a including a first substrate 101 having a thick 106 and a thin 107 dielectric region. A second substrate with a membrane layer 120 is bonded to the thick dielectric region and over the thin dielectric region to provide a MEMS cavity 114. The membrane layer provides a fixed electrode 120a and a released MEMS electrode 120b over the MEMS cavity. A first through-substrate via (TSV) 111 extends through a top side of the MEMS electrode and a second TSV 112 through a top side of the fixedelectrode. A metal cap 132 is on top of the first TSV and second TSV. A third substrate 140 including an inner cavity 144 and outer protruding portions 146 framing the inner cavity is bonded to the thick dielectric regions. The third substrate together with the first substrate seals the MEMS electrode.
摘要:
A system and method for forming a sensor device with a buried first electrode includes providing a first silicon portion with an electrode layer and a second silicon portion with a device layer. The first silicon portion and the second silicon portion are adjoined along a common oxide layer formed on the electrode layer of the first silicon portion and the device layer of the second silicon portion. The resulting multi-silicon stack includes a buried lower electrode that is further defined by a buried oxide layer, a highly-doped ion implanted region, or a combination thereof. The multi-silicon stack has a plurality of silicon layers and silicon dioxide layers with electrically isolated regions in each layer allowing for both the lower electrode and an upper electrode. The multi-silicon stack further includes a spacer that enables the lower electrode to be accessible from a topside of the sensor device.
摘要:
According to the present invention there is provided a method of manufacturing a MEMS micro mirror assembly (250), comprising the step of mounting a PCB board (205) on a metallic plate (206), mounting a MEMS device (240) on the PCB board (205), wherein the MEMS device (240) comprises a MEMS die (241) and a magnet (230).