Abstract:
Die Erfindung betrifft feuerfeste Formkörper oder Massen sowie ein Verfahren zur Erzielung einer hochfesten Bindephase in Magnesiumoxid-, Aluminiumoxid-, Zirkonmullit-, Zirkoniumdioxid-, Magnesiumaluminatspinell-, Bauxit-, Yttriumoxid-, Siliziumkarbid-, Siliziumnitrid-, Bornitrid- oder Mischungen davon kohlenstoffgebundenen Erzeugnissen, wie z. B. gepresste kohlenstoffgebundene Steine, kohlenstoffgebundene Schieberplatten oder kohlenstoffgebundene Tauchausgüsse oder gegossene kohlenstoffhaltige und/oder kohlenstoffgebundene Erzeugnisse oder kohlenstoffgebundene Stopfen, mit verbesserten mechanischen, thermischen und chemischen Eigenschaften. Die Bindematrix der feuerfesten Formkörper oder Massen enthält Titankarbid- und/oder Titankarbonitridphasen. Die feuerfesten Formkörper oder Massen sind auf Basis einer verkokten Mischung aus oxidischen und/oder nichtoxidischen und/oder kohlenstoffhaltigen Feuerfestkörnungen und einem Bindemittel aufgebaut, dem feinkörniges Titandioxid oder Ilmenit oder FeTiO 3 oder CaTiO 3 oder MgTiO 3 oder BaTiO 3 , oder eine Kombination davon, oder zusätzlich Partikel ein oder mehrerer elementarer Metalle, zugegeben sind.
Abstract:
A method of manufacturing a powdered composition or starting material used in producing a CBN compact which comprises CBN, a secondary hard phase and a binder phase includes two steps of attrition milling. First, the attrition milling of the secondary hard phase and the binder phase. Second, adding CBN particles to the fine particle mixture of the first attrition milling and then attrition milling this mixture.
Abstract:
La presente invención se refiere a un método de fabricación, via metalurgica líquida convencional, de productos elaborados y semielaborados en materiales metálicos base Fe, base Ni y base Co, reforzados microestructuralmente con carburos complejos de Molibdeno y Titanio que al resultar embebidos en los granos de la matriz metálica de base mediante su adición a ésta cuando se encuentra en estado líquido, incrementan de maneraq considerable sus características mecánicas tanto a baja temperatura como a alta.
Abstract:
A method of manufacturing graphite particles, characterized in that carbon black is graphitized by an induction heating and graphite particles contain at least one or more types of elements selected from among metals, boron, and silicon; a refractory with excellent thermal shock resistance, oxidization resistance, and corrosion resistance, wherein a composition containing fire-resistant aggregate and the graphite particles manufactured by this manufacturing method is formed, whereby the graphitization of the carbon black requiring extremely high temperature in normal heating system can be advanced easily, and the refractory having excellent thermal shock resistance, oxidization resistance, and corrosion resistance and containing less carbon content can be provided.
Abstract:
A low thermal expansion ceramic which comprises at least one selected from the group consisting of cordierite, spodumene and eucryptite in an amount of 60 vol % to 99.9 vol % and at least one selected from the group consisting of carbides, nitrides and borides of 4a Group elements, 5a Group elements and 6a Group elements and boron carbide in an amount of 0.1 vol % to 40 vol %, and has a porosity of 0.5 % or less and a thermal expansion coefficient at 10 DEG to 40 DEG of 1.5 X 10 / DEG C or less. The above ceramic has high rigidity and good resistance to abrasion together with low thermal expansion.
Abstract:
An electrically conductive ceramic sintered compact exhibiting a low thermal expansion, characterized in that it comprises 75 vol % to 99 vol % of beta -eucryptite phase, and has an absolute value of a thermal expansion coefficient at a temperature up to 50 DEG of 1.0 X 10 / K or less, a volume specific resistivity of 1.0 X 10 OMEGA .cm or less and a specific stiffness of 40 Gpa / g / cm or more.
Abstract translation:具有低热膨胀性的导电性陶瓷烧结体,其特征在于,其含有75体积%至99体积%的β-锂辉石相,并且在高达50℃的温度下的热膨胀系数的绝对值为1.0× 10 -7 / K以下,体积电阻率为1.0×10 7Ω·cm以下,比刚度为40Gpa / g / cm 3以上。
Abstract:
A method for wet forming of a powder which uses a solvent. The method allows the homogeneity of a formed product to be retained, imparts excellent plasticity and/or strength to a formed product while preventing the occurrence of in-process troubles, and, when a product is subjected to a sintering process after forming, improves sintering characteristics of the product.
Abstract:
A continuous process for the manufacture of a ceramic sintered comopact wherein the process comprises the steps of: forming a green compact from a powder mixture comprising a first component comprising compounds which contain elements of silicon, aluminum, oxygen and nitrogen; and the powder mixture further comprising a second component comprising a compound of at least one element selected from the group consisting of yttrium, scandium, cerium, lanthanum and the metals of the lanthanide series, and the second component comprising between 0.1 and 10 weight percent of the powder mixture; heat treating the green compact wherein the heat treatment comprises continously passing the green compact through at least one heating zone so as to produce a sintered compact.
Abstract:
A braking component such as a brake pad, brake rotor, brake drum or clutch disk is comprised of a metal substrate having a friction material laminated on at least a portion of at least one face of the metal substrate, the friction material being a ceramic-metal composite comprised of a metal phase and a ceramic phase dispersed within each other, wherein the ceramic phase is present in an amount of at least about 20 percent by volume of the ceramic-metal composite. In particular, the braking component is a metal substrate, such as aluminum, having laminated thereto a ceramic-metal composite of a dense boron carbide-aluminum composite having high specific heat and low density.
Abstract:
A method for making submicrometer metallic carbides and submicrometer solid solution metallic carbides from a source of at least one metallic oxide and carbon involves the rapid heating of a reactive particulate mixture of the source(s) and carbon in order to achieve a resulting particulate size of less than 1 micrometer. The rapid heating may produce either a finished product or a precursor. If a precursor is produced, it may be admixed with additional carbon and subjected to a second rapid heating step to prepare a finished product. Submicrometer sized metallic carbides and solid solution metallic carbides were suitable for use in commercial ceramic applications. The smaller sized particles produce a product having superior toughness and hardness.