Abstract:
A ceramic body is disposed in a path of light emitted by a light source. The light source may include a semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. The ceramic body includes a plurality of first grains configured to absorb light emitted by the light source and emit light of a different wavelength, and a plurality of second grains. For example, the first grains may be grains of luminescent material and the second grains may be grains of a luminescent material host matrix without activating dopant.
Abstract:
A dielectric ceramic material as claimed in claim 1 with a composition of formula x CaTiO 3 + (1-x) Sm Z Re (1-Z) AlO 3 (1) optionally doped with about 0.005% to about 5% Of CeO 2 as a dopant, wherein 0.5 ≤ x ≤ 0.9, 0.3 ≤ z ≤ 0.995, or Re may be selected from a group consisting of La, Pr, Dy, Gd, Y, Er, Ho and mixtures thereof.
Abstract translation:2.如权利要求1所述的电介质陶瓷材料,其具有式x CaTiO 3 +(1-x)Sm z Re(1-Z) (1)任选掺杂约0.005%至约5%的CeO 2 N 2作为掺杂剂,其中0.5 = x = 0.9,0.3 = z = 0.995 或Re可以选自La,Pr,Dy,Gd,Y,Er,Ho及其混合物。
Abstract:
Process for preparing granules of oxidic or nonoxidic metal compounds, characterized in that a dispersion which comprises water, oxidic or nonoxidic metal compounds and at least one dispersant is spray-dried, - where the proportion of oxidic or nonoxidic metal compounds is 40 to 70% by weight and the sum of the proportions of water and the particles is at least 70% by weight and - the particles have a BET surface area of 20 to 150 m 2 /g and a median of the particle size of less than 100 nm, - where the dispersant is present in the dispersion with a proportion of 0.25 to 10% by weight based on the oxidic or nonoxidic metal compounds and - where the spray-drying is performed by atomization with air in the cocurrent principle or fountain principle, and an air inlet temperature of 170 to 300°C and an air outlet temperature of 90 to 130°C are selected.
Abstract translation:本发明提供一种具有高阿贝数的透光陶瓷,可有利地用于像差校正,并且可以容易地制造。 特征在于,所述透光性陶瓷的特征在于,作为主要成分,含有以下通式表示的石榴石型化合物:Y 3 N 1 O O O W >,其中4.4 = v = 5.4; 并且w表示用于维持电中性状态的正数,一直在Y 3 Y O O W W中的Al的一部分或全部 这种透光陶瓷适合于例如设置成在高斯型光学系统(20)中将隔膜(28)保持在透镜之间的透镜(22,25),例如, 用于单镜头反光相机的光学系统。
Abstract:
The present invention generally relates to conducting materials such as mixed ionically and electrically conducting materials. A variety of materials, material compositions, materials with advantageous ratios of ionically and electrically conducting components, structures including such materials, and the like are provided in accordance with the invention. In one aspect, the invention relates to conducting ceramics for electrochemical systems and, in particular, to mixed ionically and electrically conducting ceramics which can be used, for example, for electrochemical systems and, in particular, to mixed ionically and electrically conducting ceramics which can be used, for example, for hydrogen gas generation from a gasified hydrocarbon stream. One aspect of the invention provides a material comprising a first phase comprising a ceramic ionic conductor, and a second phase comprising a ceramic electrical conductor. An example of such a material is a material comprising ZrO 2 doped with Sc 2 O 3 and SrTiO 3 doped with Y 2 O 3 . Another aspect of the invention provides systems and methods of hydrogen gas generation from a fuel, such as a carbonaceous fuel, using materials such as those described above, for example, present within a membrane in a reactor. In some embodiments, a substantially pure hydrogen stream may be generated through in situ electrolysis. In some cases, a material such as those described above may be used to facilitate ion and/or electron exchange between a first reaction involving a fuel such as a carbonaceous fuel, and a second reaction involving a water-hydrogen conversion reaction (i.e., where water is reduced to produce hydrogen gas). In other aspects, the invention provides systems and methods for producing power from a fuel source, such as a carbonaceous fuel source.
Abstract:
Die Erfindung betrifft einen piezokeramischen Werkstoff mit einem binären Mischsystem aus einem Erdalkali-Perowskit ABO 3 und einem Bismutoxid BiMO 3 , wobei A zumindest ein Erdalkalimetall ist, B zumindest ein Element der vierten Hauptgruppe und/oder der vierten Nebengruppe des Periodensystems ist, M zumindest ein aus der Gruppe Scandium, Ytterbium und Indium ausgewähltes Element ist, ein Perowskit- Anteil des Erdalkali-Perowskits am binären Mischsystem aus dem Bereich von einschließlich 33% bis einschließlich 66% und ein Bismutoxid-Anteil des Bismutoxids aus dem Bereich von einschließlich 66% bis einschließlich 33% ausgewählt ist. Ebenso wird ein Verfahren zum Herstellen eines piezokeramischen Werkstoffs mit folgenden Verfahrensschritten angegeben: a) Bereitstellen einer piezokeramischen Ausgangszusammensetzung des piezokeramischen Werkstoffs und b) Wärmebehandeln der piezokeramischen Ausgangszusammensetzung, wobei der piezokeramische Werkstoff entsteht. Mit der Erfindung können Dünnschichten aus dem piezokeramischen Werkstoff auf nasschemischem und damit einfachem Weg hergestellt werden. Der Werkstoff zeigt auch in Form einer solchen Dünnschicht hervorragende piezoelektrische Eigenschaften. Eingesetzt wird der neue Werkstoff insbesondere in MEMS (Micro Electro Mechanical Systems). Verwendung findet der Werkstoff aber auch in der Aktorik, z.B. für Kraftstoffeinspritzsysteme oder in Ultraschallwandlern.
Abstract:
A dielectric ceramic composition in a multilayer ceramic capacitor having a composition of formula: {[(CaO) t (SrO) 1-t ] w [(Zr0 2 ) v (Ti0 2 ) 1-v ]} 1-s-x.y-z A s E x G y H z wherein: {[(CaO) t (SrO) 1-t ] w [(ZrO 2 ) v (TiO 2 ) 1-v ]}as a first component; and A s E x G y H z as a second component; wherein A is a transition metal oxide; E is an oxide of an element selected from group III, group IV, and mixtures thereof; G is an oxide of a group II element; H is an oxide of an element selected from Y, a lanthanide, and mixtures thereof; w is 0.95 to 1.05; t is 0.50 to 1.0; v is 0.8 to 1.0; s is 0.0001 to 0.08; x is 0 to 0.08; y is 0 to 0.20; z is 0 to 0.20; and wherein said second component is homogeneously coated in solution form on said first component without multidentate chelates.In the method of example 1, the particles are coated with a V. blender.