Abstract:
Apparatus for making electrical interconnection of semiconductor die includes a transfer carrier having an electrically conductive material arranged in a pattern on a transfer surface. A transfer process for electrical interconnect includes steps of aligning the transfer apparatus with an edge of a die to be interconnected; and moving the transfer apparatus toward the die edge (or moving the die edge toward the transfer apparatus, or moving both the transfer carrier and the die edge in relation to one another) to bring the patterned conductive material on the transfer surface and interconnect terminals on the die into contact. In some embodiments the carrier is left in place in a functioning interconnected device; in other embodiments the transfer carrier and the die edge are separated to leave at least a portion of the conductive material in contact with the interconnect terminals.
Abstract:
Stackable integrated circuit devices include an integrated circuit die having interconnect pads on an active (front) side, the die having a front side edge at the conjunction of the front side of the die and a sidewall of the die, and a back side edge at the conjunction of back side of the die and the sidewall; the die further includes a conductive trace which is electrically connected to an interconnect pad and which extends over the front side edge of the die. In some embodiments the conductive trace further extends over the sidewall, and, in some such embodiments the conductive trace further extends over the back side edge of the die, and in some such embodiments the conductive trace further extends over the back side of the die. One or both of the die edges may be chamfered. Also, methods for making such a device. Also, assemblies including such a device electrically interconnected to underlying circuitry (e.g., die-to-substrate); and assemblies including a stack of at least two such devices interconnected die-to-die, or such a stack of devices electrically interconnected to underlying circuitry. Also, apparatus and methods for testing such a die.
Abstract:
Fixtures for temporarily holding semiconductor die and for holding stacked die units, for application of a material such as electrical interconnection material to die edges, include a fixture frame, die or die stack supports, and a mask. Methods for applying material such as electrical interconnection material to die edges and to die stack units employ the fixtures using a mask lift-off step.
Abstract:
A method for forming electrical interconnection on stacked die units includes steps of arranging one or more stacked die units so that the arrangement presents die edges to be interconnected at a stack face, and applying a trace of electrical interconnect material at the presented stack face.
Abstract:
Methods are disclosed for improving electrical interconnection in stacked die assemblies, and stacked die assemblies are disclosed having structural features formed by the methods. The resulting stacked die assemblies are characterized by having reduced electrical interconnect failure.
Abstract:
A die (or of a stack of die) is mounted over and elevated above a support, and is electrically connected to circuitry in the support. Pillars of electrically conductive material are formed on a set of bond pads at a mount side of the support, and the elevated die (or at least one die in the elevated stack of die) is electrically connected to the support, by traces of an electrically conductive material contacting interconnect pads on the die to the pillars, and through the pillars to the support. Also, tiered offset stacked die assemblies in a zig-zag configuration, in which the interconnect edges of a first (lower) tier face in a first direction, and the interconnect edges of a second (upper) tier, stacked over the first tier, face in a second direction, different from the first direction, are electrically connected to a support. Die in the first tier are electrically interconnected die-to-die, and the tier is electrically connected to a support, by traces of an electrically conductive material contacting interconnect pads on the die and a first set of bond pads on the support. Pillars of a electrically conductive material are formed on a second set of bond pads, and die in the second tier are electrically interconnected die-to-die, and the tier is electrically connected to the support, by traces of an electrically conductive material contacting interconnect pads on the die to the pillars, and through the pillars to the substrate.
Abstract:
Stacked die assemblies are electrically connected to connection sites on any support, without electrical connection to an interposed substrate or leadframe, and without solder.
Abstract:
A die prepared for stacking in a chip scale stacked die assembly, having interconnect sites in an area inward from a die edge and interconnect pads near at least one die edge. Second-level interconnection of the stacked die assembly can be made by way of connections between a first die in the assembly and circuitry on a support; and interconnection between die in the stack can be made by way of connection of z-interconnects with bonds pads in the die attach side of the support near or at one or more die edges. Methods for preparing the die include processes carried out to an advanced stage at the wafer level or at the die array level.
Abstract:
Methods for depositing interconnect material at a target for electrical interconnection include pulsed dispense of the material. In some embodiments droplets of interconnect material are deposited in a projectile fashion. In some embodiments the droplets are shaped by movement of the deposition tool following a deposition pulse and prior to separation of the droplet mass from the tool.
Abstract:
An electrically insulative conformal coating is applied at least to the active (front) side and one or more sidewalls of the die during wafer processing. Also, a die has an electrically insulative conformal coating applied to at least the active (front) side and sidewalls. Also, assemblies include a stack of such die, electrically interconnected die-to-die; and assemblies include such a die or a stack of such die, electrically interconnected to underlying circuitry (for example in a substrate or a circuit board).