Abstract:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity (60a, 60b) having a planar surface using a reverse damascene process.
Abstract:
A through wafer via structure. The structure includes: a semiconductor substrate (100) having a top surface (105) and an opposite bottom surface (320); and an array of through wafer vias comprising at least one electrically conductive through wafer via (130) and at least one electrically non-conductive through wafer via (125), each through wafer via of the array of through wafer vias extending from the top surface (105) of the substrate (100) to between greater than halfway to and all the way to the bottom surface (320) of the substrate (100). Also methods for fabricating the though wafer via structure.
Abstract:
A semiconductor structure and methods for forming the same. A semiconductor fabrication method includes steps of providing a structure. A structure incl udes (a) a dielectric layer, (b) a first electrically conductive region buried in the dielectric layer, wherein the first electrically conductive region comprises a first electrically conductive material, and (c) a second electrically conductive region buried in the dielectric layer, wherein the second electrically conductive region comprises a second electrically conductive material being different from the first electrically conductive material. The method further includes the steps of creating a first hole and a second hole in the dielectric layer resulting in the first and second electrically conductive regions being exposed to a surrounding ambient through the first and second holes, respectively. Then, the method further includes the steps of introducing a basic solvent to bottom walls and side walls of the first and second holes.
Abstract:
A microelectronic structure, such as a semiconductor structure, and a method for fabricating the microelectronic structure, include an aperture (R1-RA) within a substrate. (16) Into the aperture is located and formed a via. The via may include a through substrate via. The aperture includes, progressing sequentially contiguously at least partially through the substrate: (1) a first comparatively wide region (R1) at a surface of the substrate; (2) a constricted region contiguous (R2) with the first comparatively wide region; (3) a second comparatively wide region contiguous (R3) with the constricted region; and (4) a tapered region contiguous (R4) with the second comparatively wide region. The structure of the aperture provides for ease in filling the aperture, as well as void isolation within the via.
Abstract:
A semiconductor device having wiring levels on opposite sides and a method of fabricating a semiconductor structure having contacts to devices and wiring levels on opposite sides. The method including fabricating a device on a silicon-on-insulator substrate with first contacts to the devices and wiring levels on a first side to the first contacts, removing a lower silicon layer to expose the buried oxide layer, forming second contacts to the devices through the buried oxide layer and forming wiring levels over the buried oxide layer to the second contacts.
Abstract:
A backside contact structure and method of fabricating the structure. The method includes: forming a dielectric isolation (250) in a substrate (100), the substrate (100) having a frontside and an opposing backside; forming a first dielectric layer (105) on the frontside of the substrate (100); forming a trench (265C) in the first dielectric layer (105), the trench (265C) aligned over and within a perimeter of the dielectric isolation (250) and extending to the dielectric isolation (250); extending the trench (265C) formed in the first dielectric layer (1 05) through the dielectric isolation (250) and into the substrate (1 00)to a depth (Dl ) less than a thickness of the substrate (1 00); filling the trench (265C) and co-planarizing a top surface of the trench (265C) with a top surface of the first dielectric layer (1 05) to form an electrically conductive through via (270C); and thinning the substrate (100) from a backside of the substrate (100) to expose the through via (270C).
Abstract:
A semiconductor structure and method of fabricating the structure. The method includes removing the backside silicon (110A and 110B) from two silicon-on- insulator wafers (110A and 100B), respectively, having devices (130A and 130B), respectively, fabricated therein and bonding them back to back utilizing the buried oxide layers (115). Contacts (210) are then formed in the upper wafer (I00B) to devices (130A) in the lower wafer (100A) and wiring levels (170) are formed on the upper wafer (100B). The lower wafer (100A) may include wiring levels (170). The lower wafer (100A) may include landing pads (230) for the contacts. Contacts to the silicon layer (120) of the lower wafer (100A) may be silicided.
Abstract:
A method and semiconductor device. In the method, at least one partial via (26) is etched in a stacked structure and a border (32) is formed about the at least one partial via (26). The method further includes performing thick wiring using selective etching while continuing via etching to at least one etch stop layer (22).
Abstract:
Disclosed herein is a surface acoustic wave (SAW) filter and method of making the same. The SAW filter includes a piezoelectric substrate (110; Fig 3); a planar barrier layer (120) disposed above the piezoelectric substrate, and at least one conductor buried (130) in the piezoelectric substrate and the planar barrier layer.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes (115) and a contact point on a substrate. The method further includes forming a MEMS beam (100) over the fixed actuator electrodes and the contact point. The method further includes forming an array of actuator electrodes (105') in alignment with portions of the fixed actuator electrodes, which are sized and dimensioned to prevent the MEMS beam from collapsing on the fixed actuator electrodes after repeating cycling. The array of actuator electrodes are formed in direct contact with at least one of an underside of the MEMS beam and a surface of the fixed actuator electrodes.