Abstract:
One or more precursor gases, such as one or more silicon-containing gases, which may be one or more organosilicon and/or tetraalkyl orthosilicate gases, are introduced into a processing chamber and exposed to radicals. Dielectric films deposited using the techniques disclosed herein may contain silicon. The deposited films may exhibit few defects, low shrinkage, and high etch selectivity, mechanical stability, and thermal stability. In some embodiments, the deposited film can be hydrogen free. The deposition conditions can be very mild, so damage to the substrate and the as-deposited films from UV radiation and ion bombardment is minimal or nonexistent.
Abstract:
Embodiments of the present disclosure generally relate to methods of depositing a conformal layer on surfaces of high aspect ratio structures and related apparatuses for performing these methods. The conformal layers described herein are formed using PECVD methods in which a semiconductor device including a plurality of high aspect ratio features is disposed on a substrate support in a process volume of a process chamber, gases are supplied to the process volume, and a plasma is generated in the process volume by pulsing RF power coupled to the process gases disposed in the process volume of the process chamber.
Abstract:
A method of forming a low-k dielectric layer with barrier properties is disclosed. The method comprises forming a dielectric layer by PECVD which is doped with one or more of boron, nitrogen or phosphorous. The dopant gas of some embodiments may be coflowed with the other reactants during deposition.
Abstract:
Embodiments described herein provide a method of forming a low-k carbon-doped silicon oxide (CDO) layer having a high hardness by a plasma-enhanced chemical vapor deposition (PECVD) process. The method includes providing a carrier gas at a carrier gas flow rate and a CDO precursor at a precursor flow rate to a process chamber. A radio frequency (RF) power is applied at a power level and a frequency to the CDO precursor. The CDO layer is deposited on a substrate within the process chamber.
Abstract:
Exemplary methods of forming a silicon-and-carbon-containing material may include flowing a silicon-and-carbon-containing precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region of the semiconductor processing chamber. The methods may include forming a plasma within the processing region of the silicon-and-carbon-containing precursor. The plasma may be formed at a frequency above 15 MHz. The methods may include depositing a silicon-and-carbon-containing material on the substrate. The silicon-and-carbon-containing material as-deposited may be characterized by a dielectric constant below or about 3.0.
Abstract:
Methods for deposition of high-hardness low-k dielectric films are described. More particularly, a method of processing a substrate is provided. The method includes flowing a precursor-containing gas mixture into a processing volume of a processing chamber having a substrate, the precursor having the general formula (I) wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are independently selected from hydrogen (H), alkyl, alkoxy, vinyl, silane, amine, or halide; maintaining the substrate at a pressure in a range of about 0.1 mTorr and about 10 Torr and at a temperature in a range of about 200°C to about 500°C; and generating a plasma at a substrate level to deposit a dielectric film on the substrate.
Abstract:
Embodiments disclosed herein relate to methods for forming memory devices, and more specifically to improved methods for forming a dielectric encapsulation layer over a memory material in a memory device. In one embodiment, the method includes thermally depositing a first material over a memory material at a temperature less than the temperature of the thermal budget of the memory material, exposing the first material to nitrogen plasma to incorporate nitrogen in the first material, and repeating the thermal deposition and nitrogen plasma operations to form a hermetic, conformal dielectric encapsulation layer over the memory material. Thus, a memory device having a hermetic, conformal dielectric encapsulation layer over the memory material is formed.
Abstract:
Methods of single precursor deposition of hardmask and ARC layers, are described. The resultant film is a SiOC layer with higher carbon content terminated with high density silicon oxide SiO 2 layer with low carbon content. The method can include delivering a first deposition precursor to a substrate, the first deposition precursor comprising an SiOC precursor and a first flow rate of an oxygen containing gas; activating the deposition species using a plasma, whereby a SiOC containing layer over an exposed surface of the substrate is deposited. Then delivering a second precursor gas to the SiOC containing layer, the second deposition gas comprising different or same SiOC precursor with a second flow rate and a second flow rate of the oxygen containing gas and activating the deposition gas using a plasma, the second deposition gas forming a SiO 2 containing layer over the hardmask, the SiO 2 containing layer having very low carbon.
Abstract:
Implementations disclosed herein generally relate to methods of forming silicon oxide films. The methods can include performing silylation on the surface of the substrate having terminal hydroxyl groups. The hydroxyl groups on the surface of the substrate are then regenerated using a plasma and H2O soak in order to perform an additional silylation. Further methods include catalyzing the exposed surfaces using a Lewis acid, directionally inactivating the exposed first and second surfaces and deposition of a silicon containing layer on the sidewall surfaces. Multiple plasma treatments may be performed to deposit a layer having a desired thickness.