Abstract:
A method of modifying a layer in a semiconductor device is provided. The method includes depositing a low quality film on a semiconductor substrate, and exposing a surface of the low quality film to a first process gas comprising helium while the substrate is heated to a first temperature, and exposing a surface of the low quality film to a second process gas comprising oxygen gas while the substrate is heated to a second temperature that is different than the first temperature. The electrical properties of the film are improved by undergoing the aforementioned processes.
Abstract:
A method of forming a semiconductor structure includes annealing a surface of a substrate in an ambient of hydrogen to smooth the surface, pre-cleaning the surface of the substrate, depositing a high-κ dielectric layer on the pre-cleaned surface of the substrate, performing a re-oxidation process to thermally oxidize the surface of the substrate; performing a plasma nitridation process to insert nitrogen atoms in the deposited high-κ dielectric layer, and performing a post-nitridation anneal process to passivate chemical bonds in the plasma nitridated high-κ dielectric layer.
Abstract:
Apparatus and methods for the manufacture of semiconductor devices suitable for narrow pitch applications and methods of fabrication thereof are described herein. Disclosed are various single chambers configured to form and/or shape a material layer by oxidizing a surface of a material layer to form an oxide layer; removing at least some of the oxide layer by an etching process; and cyclically repeating the oxidizing and removing processes until the material layer is formed to a desired shape. In some embodiments, the material layer may be a floating gate of a semiconductor device.
Abstract:
Described is a method of manufacturing a gate-all-around electronic device. The method includes forming a thermal oxide layer though an enhanced in situ steam generation process in combination with atomic layer deposition of a low-κ layer. The thin thermal oxide layer passivates the interface between the silicon layer and the dielectric layer of the GAA. A passivation process after the deposition of the low-κ layer reduces the bulk trap and enhances the breakdown performance of the GAA transistor.
Abstract:
A method of modifying a layer in a semiconductor device is provided. The method includes depositing a low quality film on a semiconductor substrate, and exposing a surface of the low quality film to a first process gas comprising helium while the substrate is heated to a first temperature, and exposing a surface of the low quality film to a second process gas comprising oxygen gas while the substrate is heated to a second temperature that is different than the first temperature. The electrical properties of the film are improved by undergoing the aforementioned processes.
Abstract:
Implementations described herein generally relate to methods for forming a low-k dielectric material on a semiconductor substrate. More specifically, implementations described herein relate to methods of forming a silicon oxide film at high pressure and low temperatures. A method of forming a silicon oxide film comprises loading a substrate having a silicon-containing film formed thereon into a processing region of a high-pressure vessel. The method further comprises forming a silicon oxide film on the silicon-containing film. Forming the silicon oxide film on the silicon-containing film comprises exposing the silicon-containing film to an oxidative medium comprising an amine additive at a pressure greater than about 1 bar and maintaining the high-pressure vessel at a temperature between about 100 degrees Celsius and about 550 degrees Celsius.
Abstract:
Methods and apparatuses for processing substrates, such as during silicon-germanium pre-cleans, are provided. A method includes introducing the substrate into a processing system, where the substrate contains a plurality of silicon-containing (e.g., SiGe) fins and a contaminant disposed on the silicon-containing fins, and exposing the substrate to a plasma treatment to remove at least a portion of the contaminant disposed from the silicon-containing fins. The method also includes exposing the substrate to an oxidation treatment to produce an oxide layer on the silicon-containing fins and the remaining contaminant thereon, then exposing the substrate to a dry-clean treatment to remove the oxide layer and the remaining contaminant from the silicon-containing fins and produce a cleaned surface thereon, and depositing an epitaxial layer on the cleaned surface on the silicon-containing fins.
Abstract:
A method of forming a silicon cap which comprises substantially no germanium atoms nor oxygen atoms is disclosed. Methods for controlling the oxidation of a silicon cap layer are also disclosed. Methods of forming a metal gate replacement which utilize the disclosed silicon cap and controlled oxidation are also disclosed.
Abstract:
Methods and apparatus for forming an oxide layer on a semiconductor substrate are disclosed. In one or more embodiments, plasma oxidation is used to form a conformal oxide layer by controlling the temperature of the semiconductor substrate at below about 100° C. Methods for controlling the temperature of the semiconductor substrate according to one or more embodiments include utilizing an electrostatic chuck and a coolant and gas convection.