Abstract:
A gas discharge laser capable of operating at pulse rates in the range of 4,000 Hz to 6,000 Hz at pulse energies in the range of 5 mJ to 10 mJ or greater. Important improvements over the prior art designs include: (1) a squirrel cage type fan (46A) for producing gas velocities in the discharge region of more than 67 m/s, (2) a liquid cooled drive motor having a low loss sealing member separating the motor from the motor starter and protecting the motor from the laser and breach detection device for detecting any breach of the sealing member, (3) a heat exchanger system (58A) capable of removing in excess of 16 kW of heat energy from the laser gas and (4) a pulse power system capable of providing precisely controlled electrical pulses to the electrodes (18A, 20A) to produce laser pulses at the desired pulse energies in the range of 5 mJ to 10 mJ or greater at pulse repetition rates in the range of 4,000 Hz to 6,000 Hz.
Abstract:
An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma ("LPP") extreme ultraviolet ("EUV") light source control system comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, comprising: a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, wherein the target stream track results from the imaging speed of the camera being too slow to image individual plasma formation targets forming the target stream imaged as the target stream track; a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site. At least one target crossing detector may be aimed at the target track and detecting the passage of a plasma formation target through a selected point in the target track. A drive laser triggering mechanism utilizing an output of the target crossing detector to determine the timing of a drive laser trigger in order for a drive laser output pulse to intersect the plasma initiation target at a selected plasma initiation site along the target track at generally its closest approach to the desired plasma initiation site. A plasma initiation detector may be aimed at the target track and detecting the location along the target track of a plasma initiation site for a respective target. An intermediate focus illuminator may illuminate an aperture formed at the intermediate focus to image the aperture in the at least one imaging device. The at least one imaging device may be at least two imaging devices each providing an error signal related to the separation of the target track from the vertical centerline axis of the image of the intermediate focus based upon an analysis of the image in the respective one of the at least two imaging devices. A target delivery feedback and control system may comprise a target delivery unit; a target delivery displacement control mechanism displacing the target delivery mechanism at least in an axis corresponding to a first displacement error signal derived from the analysis of the image in the first imaging device and at least in an axis corresponding to a second displacement error signal derived from the analysis of the image in the second imaging device.
Abstract:
A method and apparatus that may comprise an EUV light producing mechanism utilizing an EUV plasma source material comprising a material that will form an etching compound, which plasma source material produces EUV light in a band around a selected center wavelength comprising: an EUV plasma generation chamber; an EUV light collector contained within the chamber having a reflective surface containing at least one layer comprising a material that does not form an etching compound and/or forms a compound layer that does not significantly reduce the reflectivity of the reflective surface in the band; an etchant source gas contained within the chamber comprising an etchant source material with which the plasma source material forms an etching compound, which etching compound has a vapor pressure that will allow etching of the etching compound from the reflective surface. The etchant source material may comprises a halogen or halogen compound. The etchant source material may be selected based upon the etching being stimulated in the presence of photons of EUV light and/or DUV light and/or any excited energetic photons with sufficient energy to stimulate the etching of the plasma source material. The apparatus may further comprise an etching stimulation plasma generator providing an etching stimulation plasma in the working vicinity of the reflective surface; and the etchant source material may be selected based upon the etching being stimulated by an etching stimulation plasma. There may also be an ion accelerator accelerating ions toward the reflective surface. The ions may comprise etchant source material. The apparatus and method may comprise a part of an EUV production subsystem with an optical element to be etched of plasma source material.
Abstract:
According to aspects of an embodiment of the disclosed subject matter, method and apparatus are disclose that ma y comprise adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, without utilizing any beam magnification control, or adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, while utilizing beam magnification control for other than bandwidth control, and adjusting a differential timing between gas discharges in the seed laser and amplifier laser for bandwidth control, based on the error signal, or for control of another laser operating parameter other than bandwidth, while utilizing beam magnification control for bandwidth control based on the error signal.
Abstract:
An apparatus and method for providing cooling to a magnetic circuit element having a magnetic core disposed around a centrally located core support member (200) having at least one core support member wall (210) is disclosed which may comprise a core support coolant inlet (282); a core support coolant outlet (283); a plurality of interconnected coolant flow passages (270) contained within the core support member wall and inter connected an arranged to pass coolant from one coolant flow passage to the next within the core support member wall along a coolant flow path within at least a substantial portion of the core support member wall from the core support coolant inlet to the core support coolant outlet. The apparatus may also comprise each core support coolant flow passage is in fluid communication with a fluid communication plenum at each end of each respective core support coolant flow passage, with each respective fluid communication plenum forming an outlet plenum for at least a first one of the respective core support coolant flow passages and an inlet plenum for at least a second one of the respective core support coolant flow passages along the coolant flow path from the core support coolant inlet to the core support coolant outlet.
Abstract:
The present invention provides long life optics for a modular, high repetition rate, ultraviolet gas discharge laser systems (Fig. 1B) producing a high repetition rate high power output beam (38). The invention includes solutions to a surface damage problem discovered by Applicants on CaF2 optics (4260) (422)(424)(426) located in high pulse intensity sections (10)(26) of the output beam (14C) of prototype laser systems. Embodiments include an enclosed (4) and purged beam path (14C) with beam pointing control (40A) (40B)(6) for beam delivery of billions of output laser pulses (38). Optical components and modules described herein are capable of controlling ultraviolet laser output pulses (14A) with wavelength less than 200nm with average output pulse intensities greater than 1.75x10 Watts/cm and with peak intensity or greater 3.5x10 Watts/cm for many billions of pulses (14A) as compared to prior art components and modules which failed after only a few minutes in these pulse intensities.
Abstract:
The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5mJ or greater. A preferred embodiments is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
Abstract:
A line narrowing apparatus and method for a narrow band DUV high power high repetition rate gas discharge laser producing output laser light pulse beam pulses in bursts of pulses is disclosed, which may comprise a dispersive center wavelength selection optic contained within a line narrowing module, selecting at least one center wavelength for each pulse determined at least in part by the angle of incidence of the laser light pulse beam containing the respective pulse on a dispersive wavelength selection optic dispersive surface; a first dispersive optic bending mechanism operatively connected to the dispersive center wavelength selection optic and operative to change the curvature of the dispersive surface in a first manner; and, a second dispersive optic bending mechanism operatively connected to the dispersive center wavelength selection optic and operative to change the curvature of the dispersive surface in a second manner. The first manner may modify a first measure of bandwidth and the second manner may modify a second measure of bandwidth such that the ratio of the first measure to the second measure substantially changes. The first measure may be a spectrum width at a selected percentage of the spectrum peak value (FWX%M) and the second measure may be width within which some selected percentage of the spectral intensity is contained (EX%). The first dispersive optic bending mechanism may change the curvature of the dispersive surface in a first dimension and the second in a second dimension generally orthogonal to the first dimension. The laser system may comprise a beam path insert comprising a material having an different index of refraction and an index of refraction thermal gradient opposite from that of a neighboring optical element. The first dispersive optic bending mechanism may change the curvature of the dispersive surface in a first dimension and the second a second dimension generally parallel to the first dimension. An optical beam twisting element in the lasing cavity may optically twist the laser light pulse beam to present a twisted wavefront to the dispersive center wavelength selection optic. Bending may change the curvature and wavelength selection, e.g., in a burst may create two center wavelength peaks to select FWX%M and EX% independently.
Abstract:
A device is disclosed which may comprise a system generating a plasma at a plasma site, the plasma producing EUV radiation and ions exiting the plasma. The device may also include an optic, e.g., a multi-layer mirror, distanced from the site by a distance, d, and a flowing gas disposed between the plasma and optic, the gas establishing a gas pressure sufficient to operate over the distance, d, to reduce ion energy below a pre-selected value before the ions reach the optic, hi one embodiment, the gas may comprise hydrogen and in a particular embodiment, the gas may comprise greater than 50 percent hydrogen by volume.
Abstract:
A method and apparatus is disclosed for operating a laser output light beam pulse line narrowing mechanism that may comprise a nominal center wavelength and bandwidth selection optic; a static wavefront compensation mechanism shaping the curvature of the selection optic; an active wavefront compensation mechanism shaping the curvature of the selection optic and operating independently of the static wavefront compensation mechanism. The method and apparatus may comprise the nominal center wavelength and bandwidth selection optic comprises a grating; the static wavefront compensation mechanism applies a pre-selected bending moment to the grating; the active wavefront compensation mechanism applies a separate selected bending moment to the grating responsive to the control of a bending moment controller based on bandwidth feedback from a bandwidth monitor monitoring the bandwidth of the laser output light beam pulses. The active wavefront compensation mechanism may comprise a pneumatic drive mechanism.