Abstract:
Catalysts and articles useful for selective catalytic reduction (SCR) are disclosed. The catalyst comprises a cerium oxide and an octahedral molecular sieve (OMS) comprising manganese oxide. The catalysts, which comprise 0.1 to 50 wt.% of cerium, can be made by doping, ion-exchange, deposition, or other techniques. Also disclosed is an SCR process in which a gaseous mixture comprising nitrogen oxides is selectively reduced in the presence of a reductant and the cerium-modified OMS catalyst. The cerium-modified manganese oxide OMS catalysts offer unexpected advantages for selective catalytic reduction, especially NH 3 -SCR, including improved thermal stability and improved activity for NOx conversion, especially at relatively low temperatures (100°C to 250°C).
Abstract:
The present invention discloses a catalytic process to convert renewable feedstock into aromatics rich aviation fuel. Particularly, the invention falls within the processing field of hydroconversion. The hydroprocessing of vegetable triglycerides and free fatty acids using a catalytic process to produce parafins, iso-parafins, cyclo- paraffins and aromatics.
Abstract:
A process for producing high quality lubricants by hydrocracking a high boiling hydrocarbon feed in the presence of hydrogen and a bifunctional hydrocracking catalyst based on an ultra-large pore crystalline material. The crystalline material exhibits unusually large pores of at least 13 ANGSTROM diameter and a high sorption capacity demonstrated by its benzene adsorption capacity of greater than 15 grams benzene/100 grams at 6.7 kPa (50 Torr) and 25 DEG C. The crystalline material is characterized by an X-ray diffraction pattern with at least one d-spacing greater than 18 ANGSTROM and in a particularly preferred form, a hexagonal arrangement of pores of at least 13 ANGSTROM diameter which can be indexed with a d100 value greater than 18 ANGSTROM . The hydrocracking catalysts based on these materials are capable of producing hydrocracked lube products of good viscosity index in high yields without the use of fluorine or other promoters. Petroleum waxes may be used as the feed and is hydrocracked and hydroisomerized to form the lube products.
Abstract:
A hydrogenation process for reducing the unsaturation of lubricants uses a catalyst which is based on an ultra-large pore crystalline material. The crystalline material has pores of at least 1.3 nm (13 ANGSTROM ) diameter arranged in a uniform manner and exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than 15 grams benzene/100 grams (6.7 kPa/50 torr and 25 DEG C). A preferred form of the catalyst has a hexagonal structure which exhibits a hexagonal electron diffraction pattern that can be indexed with a d100 value greater than 1.8 nm (18 ANGSTROM ). The hydrogenation catalysts based on these materials are capable of reducing the unsaturation in poly alpha olefin lubricants to a low level.
Abstract:
A process for preparing a meseporous material, e.g., transition metal oxide, sulfide, selenide or telluride, Lanthanide metal oxide, sulfide, selenide or telluride, a post-transition metal oxide, sulfide, selenide or telluride and metalloid oxide, sulfide, selenide or telluride. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous material, A mesoporous material, prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous materials. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic or lyotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control.nano-sized wall crystallinity and mesoporosity in the mesoporous material. Mesoporous materials and a method of tuning structural properties of mesoporous materials.
Abstract:
La présente invention concerne un procédé de métathèse des oléfines comportant la mise en contact desdites oléfines avec un catalyseur préalablement activé par chauffage à une température comprise entre 100 et 1000°C sous atmosphère de gaz non réducteur, ledit catalyseur comprenant au moins un matériau inorganique constitué d'au moins deux particules sphériques élémentaires, chacune desdites particules sphériques élémentaires comprenant des particules métalliques oxydes de taille d'au plus 300 nm et contenant au moins un métal choisi parmi le tungstène, le molybdène, le rhénium, le cobalt, l'étain, le ruthénium, le fer et le titane pris seul ou en mélange, Iesdites particules métalliques oxydes étant présentes au sein d'une matrice mésostructurée à base d'oxyde d'au moins un élément Y choisi parmi le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, ryttrium, le cérium, le gadolinium, l'europNium et le néodyme et le mélange d'au moins deux de ces éléments, ladite matrice mésostructurée ayant une taille de pores comprise entre 1,5 et 50 nm et présentant des parois amorphes d'épaisseur comprise entre 1 et 30 nm et Iesdites particules sphériques élémentaires ayant un diamètre maximal de 200 μητι.
Abstract:
On décrit un procédé de préparation d'un matériau inorganique à porosité hiérarchisée dans les domaines de la microporosité et de la mésoporosité, ledit matériau étant constitué d'au moins deux particules sphériques élémentaires ayant un diamètre maximal de 200 microns, chacune desdites particules sphériques comprenant des particules métalliques présentes au sein d'une matrice mésostructurée à base d'oxyde de silicium, présentant des parois microporeuses d'épaisseur comprise entre 1 et 60 nm, ledit procédé comprenant les étapes : a) la préparation d'une solution contenant des nanocristaux zéolithiques de taille nanométrique maximale égale à 60 nm à base de silicium et/ou des éléments précurseurs d'entités proto-zéolithiques à base de silicium, b) le mélange en solution desdites particules métalliques ou d'au moins un précurseur métallique desdites particules métalliques, d'un tensioactif et de ladite solution obtenue selon a) tel que le rapport des volumes de matières inorganiques et organiques V inorganique /V organique est compris entre 0,29 et 0,50, c) l'atomisation par aérosol de ladite solution obtenue à l'étape b) pour conduire à la formation de gouttelettes sphériques, d) le séchage desdites particules, g) l'élimination dudit agent structurant et dudit tensioactif.
Abstract:
A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30Å and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sri, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2θ. The catalyst is contacted with an organic feed under reaction conditions wherein the treating process is selected from alkylation, acylation, oligomerization, selective oxidation, hydrotreating, isomerization, demetalation, catalytic dewaxing, hydroxylation, hydrogenation, ammoximation, isomerization, dehydrogenation, cracking and adsorption.
Abstract:
Paraffins, especially light paraffins in the C4-C8 range, are isomerized to iso-paraffins over an isomerization catalyst comprising a noble metal such as platinum on a support material comprising an inorganic, non-layered, porous, crystalline phase aluminosilicate material which exhibits, after calcination, an X-ray diffraction pattern with at least one peak at a d-spacing greater than 18 Å and a benzene adsorption capacity greater than about 15 grams benzene per 100 grams at 50 torr and 25 °C. In its preferred form, the support material has a uniform, hexagonal arrangement of pores with diameters of at least about 13 Å and a hexagonal electron diffraction pattern that can be indexed with a d100 value greater than about 18 Å which corresponds to at least one peak in the X-ray diffraction pattern.
Abstract:
A method of making a xylene isomerization catalyst comprises the steps of (i) contacting a ZSM-5 zeolite starting material having a silica to alumina molar ratio of 20 to 50 and having a mesopore surface area in the range of 50 m 2 /gram to 200 m 2 /gram in a reactor with a base to provide an intermediate zeolite material; (ii) recovering the intermediate ZSM-5 zeolite material of step (i); (iii) contacting the intermediate zeolite material with an acid to provide an acid treated ZSM-5 zeolite product; (iv) recovering the acid treated ZSM-5 zeolite material; and (v) calcining the acid treated ZSM-5 zeolite material to provide a desilicated ZSM-5 zeolite product having a silica to alumina molar ratio of 20 to 150 and having a mesopore surface area in the range of 100 m 2 /gram to 400 m 2 /gram.