摘要:
A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with methods of operation. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
摘要:
A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM.
摘要:
A process of forming an integrated circuit containing a bipolar junction transistor (BJT) (1002) and a metal oxide semiconductor (MOS) (1004) transistor by cooling the integrated circuit substrate to 5 °C or colder and concurrently implanting dopants, at a specified minimum dose according to species, into the emitter region of the BJT and into the source and drain regions of the MOS transistor.
摘要:
Bipolar transistor structures, methods of designing and fabricating bipolar transistors, methods of designing circuits having bipolar transistors. The method of designing the bipolar transistor includes: selecting an initial design of a bipolar transistor (240 of FIG. 18); scaling the initial design of the bipolar transistor to generate a scaled design of the bipolar transistor (245); determining if stress compensation of the scaled design of the bipolar transistor is required based on dimensions of an emitter of the bipolar transistor after the scaling (250); and if stress compensation of the scaled design of the bipolar transistor is required then adjusting a layout of a trench isolation layout level of the scaled design relative to a layout of an emitter layout level of the scaled design (255) to generate a stress compensated scaled design of the bipolar transistor (260).
摘要:
An asymmetric insulated-gate field-effect transistor (100 or 102) has a source (240 or 280) and a drain (242 or 282) laterally separated by a channel zone (244 or 284) of body material (180 or 182) of a semiconductor body. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A more heavily doped pocket portion (250 or 290) of the body material extends largely along only the source. The source has a main source portion (240M or 280M) and a more lightly doped lateral source extension (240E or 280E). The drain has a main portion (242M or 282M) and a more lightly doped lateral drain extension (242E or 282E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension. These features enable the threshold voltage to be highly stable with operational time.
摘要:
A memory cell comprises asymmetric retention elements formed of bipolar junction transistors integrated with a CMOS transistor. The BJT transistors of the retention element may be vertically stacked. In one embodiment, the N region of two adjacent NPN BJT transistors may be connected to ground and may form a common emitter of the NPN BJT transistors while the P region of two adjacent PNP BJT transistors may be connected to high voltage and may form a common emitter of the PNP BJT transistors. For further compactness in one embodiment a base of one transistor doubles as a collector of another transistor. The retention element may have only a single bit line and a single write line, with no negative bit line. In some embodiments, a single inverter and only three transistors may form the retention element. Memory space may be cut approximately in half.
摘要:
The invention relates to a semiconductor device (30) comprising a substrate (1), a semiconductor body (25) comprising a bipolar transistor that comprises a collector region (3), a base region (4), and an emitter region (15), wherein at least a portion of the collector region (3) is surrounded by a first isolation region (2, 8), the semiconductor body (25) further comprises an extrinsic base region (35) arranged in contacting manner to the base region (4). In this way, a fast semiconductor device with reduced impact of parasitic components is obtained.
摘要:
Bipolar transistors in complimentary MOS (CMOS) integrated circuits (ICs) (100) are often fabricated as parasitic components, in which emitters of bipolar transistors are implanted in the same processes as CMOS sources/drains, to avoid manufacturing costs associated with dedicated implants for bipolar emitters. Energies and doses of CMOS source/drain implants (116) are typically selected to optimize CMOS transistor performance, resulting in less than optimum values of bipolar parameters such as gain. CMOS ICs often include implanted resistors of a same type as the emitters of the bipolar transistors in the same ICs. This invention discloses bipolar transistors with emitters implanted by CMOS source/drain implants and resistor implants to improve bipolar transistor parameters, and a method for fabricating same.